Group refactoring WIP: Broken parsing & tests

This commit is contained in:
Denis Redozubov 2023-06-15 15:53:29 +04:00
parent 3bc67d66cc
commit 1582b47194
3 changed files with 494 additions and 154 deletions

View file

@ -2,7 +2,7 @@ use std::collections::BTreeMap;
use std::process::exit;
use std::str::FromStr;
use poly::dsl::dsl::{self, KnownLength};
use poly::dsl::dsl::{self, KnownLength, flatten_groups};
use poly::midi::core::{create_smf, Part};
use poly::midi::time::TimeSignature;
@ -53,10 +53,10 @@ fn validate_and_parse_part(
match cli {
None => {}
Some(pattern) => match dsl::groups(pattern.as_str()) {
Ok((_, group)) => {
println!("{:?}: {:?}", part, group);
println!("group to 128th: {}", group.to_128th());
patterns.insert(part, group);
Ok((_, groups)) => {
println!("{:?}: {:?}", part, groups);
// println!("group to 128th: {}", group.to_128th());
patterns.insert(part, groups);
}
Err(_) => {
panic!("{} pattern is malformed.", part_to_string(part))

View file

@ -1,17 +1,15 @@
use std::num::ParseIntError;
use std::ops::Add;
use std::str::{self, FromStr};
use std::vec::Vec;
use std::ops::{Add};
use nom::branch::alt;
pub use nom::character::complete::{char, digit1};
use nom::multi::many1;
use nom::sequence::{separated_pair, tuple, delimited};
use nom::sequence::{delimited, separated_pair, tuple};
use nom::{Err, IResult};
use nom::branch::alt;
use nom::Err::Error;
use nom::combinator::{map, map_res, all_consuming};
use nom::combinator::{all_consuming, map, map_res};
/// Allows measurement in 128th notes.
pub trait KnownLength {
@ -26,7 +24,7 @@ pub enum BasicLength {
Eighth,
Sixteenth,
ThirtySecond,
SixtyFourth
SixtyFourth,
}
impl FromStr for BasicLength {
@ -36,7 +34,7 @@ impl FromStr for BasicLength {
let result: Result<u16, ParseIntError> = s.parse();
match result {
Ok(n) => Self::from_num(n),
Result::Err(e) => panic!("{}", e)
Result::Err(e) => panic!("{}", e),
}
}
}
@ -65,7 +63,10 @@ impl BasicLength {
4 => Ok(BasicLength::Fourth),
2 => Ok(BasicLength::Half),
1 => Ok(BasicLength::Whole),
e => Err(format!("{} is not a num BasicLength can be constructed from", e))
e => Err(format!(
"{} is not a num BasicLength can be constructed from",
e
)),
}
}
@ -80,7 +81,10 @@ impl BasicLength {
32 => Ok(BasicLength::Fourth),
64 => Ok(BasicLength::Half),
128 => Ok(BasicLength::Whole),
e => Err(format!("{} is not a num BasicLength can be constructed from", e))
e => Err(format!(
"{} is not a num BasicLength can be constructed from",
e
)),
}
}
}
@ -99,24 +103,44 @@ impl Add<BasicLength> for BasicLength {
BasicLength::SixtyFourth => 2,
};
if self == rhs && self != BasicLength::Whole {
Length::Simple(ModdedLength::Plain(BasicLength::from_128th(f(self) * 2).unwrap()))
Length::Simple(ModdedLength::Plain(
BasicLength::from_128th(f(self) * 2).unwrap(),
))
} else {
let n1 : u16 = f(self);
let n1: u16 = f(self);
let n2 = f(rhs);
let total = n1 + n2;
if total > 128 {
Length::Tied(ModdedLength::Plain(BasicLength::Whole), ModdedLength::Plain(BasicLength::from_128th(total - 128).unwrap()))
Length::Tied(
ModdedLength::Plain(BasicLength::Whole),
ModdedLength::Plain(BasicLength::from_128th(total - 128).unwrap()),
)
} else if total > 32 {
Length::Tied(ModdedLength::Plain(BasicLength::Half), ModdedLength::Plain(BasicLength::from_128th(total - 64).unwrap()))
Length::Tied(
ModdedLength::Plain(BasicLength::Half),
ModdedLength::Plain(BasicLength::from_128th(total - 64).unwrap()),
)
} else if total > 16 {
Length::Tied(ModdedLength::Plain(BasicLength::Fourth), ModdedLength::Plain(BasicLength::from_128th(total - 32).unwrap()))
Length::Tied(
ModdedLength::Plain(BasicLength::Fourth),
ModdedLength::Plain(BasicLength::from_128th(total - 32).unwrap()),
)
} else if total > 8 {
Length::Tied(ModdedLength::Plain(BasicLength::Eighth), ModdedLength::Plain(BasicLength::from_128th(total - 16).unwrap()))
Length::Tied(
ModdedLength::Plain(BasicLength::Eighth),
ModdedLength::Plain(BasicLength::from_128th(total - 16).unwrap()),
)
} else if total > 4 {
Length::Tied(ModdedLength::Plain(BasicLength::Fourth), ModdedLength::Plain(BasicLength::from_128th(total - 8).unwrap()))
Length::Tied(
ModdedLength::Plain(BasicLength::Fourth),
ModdedLength::Plain(BasicLength::from_128th(total - 8).unwrap()),
)
} else {
Length::Tied(ModdedLength::Plain(BasicLength::Half), ModdedLength::Plain(BasicLength::from_128th(total - 4).unwrap()))
Length::Tied(
ModdedLength::Plain(BasicLength::Half),
ModdedLength::Plain(BasicLength::from_128th(total - 4).unwrap()),
)
}
}
}
@ -124,15 +148,30 @@ impl Add<BasicLength> for BasicLength {
#[test]
fn test_add_basic_length() {
assert_eq!(BasicLength::Half + BasicLength::Half, Length::Simple(ModdedLength::Plain(BasicLength::Whole)));
assert_eq!(BasicLength::Whole + BasicLength::Whole, Length::Tied(ModdedLength::Plain(BasicLength::Whole), ModdedLength::Plain(BasicLength::Whole)));
assert_eq!(BasicLength::Half + BasicLength::SixtyFourth, Length::Tied(ModdedLength::Plain(BasicLength::Half), ModdedLength::Plain(BasicLength::SixtyFourth)));
assert_eq!(
BasicLength::Half + BasicLength::Half,
Length::Simple(ModdedLength::Plain(BasicLength::Whole))
);
assert_eq!(
BasicLength::Whole + BasicLength::Whole,
Length::Tied(
ModdedLength::Plain(BasicLength::Whole),
ModdedLength::Plain(BasicLength::Whole)
)
);
assert_eq!(
BasicLength::Half + BasicLength::SixtyFourth,
Length::Tied(
ModdedLength::Plain(BasicLength::Half),
ModdedLength::Plain(BasicLength::SixtyFourth)
)
);
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum ModdedLength {
Plain(BasicLength),
Dotted(BasicLength)
Dotted(BasicLength),
}
impl KnownLength for ModdedLength {
@ -141,7 +180,7 @@ impl KnownLength for ModdedLength {
ModdedLength::Plain(bl) => bl.to_128th(),
ModdedLength::Dotted(bl) => {
let l = bl.to_128th();
l + l /2
l + l / 2
}
}
}
@ -151,7 +190,7 @@ impl KnownLength for ModdedLength {
pub enum Length {
Simple(ModdedLength),
Tied(ModdedLength, ModdedLength),
Triplet(ModdedLength)
Triplet(ModdedLength),
}
impl KnownLength for Length {
@ -159,7 +198,7 @@ impl KnownLength for Length {
match self {
Length::Simple(ml) => ml.to_128th(),
Length::Tied(ml1, ml2) => ml1.to_128th() + ml2.to_128th(),
Length::Triplet(ml) => ml.to_128th() * 2 / 3
Length::Triplet(ml) => ml.to_128th() * 2 / 3,
}
}
}
@ -167,67 +206,82 @@ impl KnownLength for Length {
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Note {
Hit,
Rest
Rest,
}
use Note::*;
#[allow(dead_code)]
pub(crate) static WHOLE : &Length = &Length::Simple(ModdedLength::Plain(BasicLength::Whole));
pub(crate) static WHOLE: &Length = &Length::Simple(ModdedLength::Plain(BasicLength::Whole));
#[allow(dead_code)]
pub(crate) static HALF : &Length = &Length::Simple(ModdedLength::Plain(BasicLength::Half));
pub(crate) static HALF: &Length = &Length::Simple(ModdedLength::Plain(BasicLength::Half));
#[allow(dead_code)]
pub(crate) static FOURTH : &Length = &Length::Simple(ModdedLength::Plain(BasicLength::Fourth));
pub(crate) static FOURTH: &Length = &Length::Simple(ModdedLength::Plain(BasicLength::Fourth));
#[allow(dead_code)]
pub(crate) static EIGHTH : &Length = &Length::Simple(ModdedLength::Plain(BasicLength::Eighth));
pub(crate) static EIGHTH: &Length = &Length::Simple(ModdedLength::Plain(BasicLength::Eighth));
#[allow(dead_code)]
pub(crate) static SIXTEENTH : &Length = &Length::Simple(ModdedLength::Plain(BasicLength::Sixteenth));
pub(crate) static SIXTEENTH: &Length = &Length::Simple(ModdedLength::Plain(BasicLength::Sixteenth));
#[allow(dead_code)]
pub(crate) static THIRTY_SECOND : &Length = &Length::Simple(ModdedLength::Plain(BasicLength::ThirtySecond));
pub(crate) static THIRTY_SECOND: &Length =
&Length::Simple(ModdedLength::Plain(BasicLength::ThirtySecond));
#[allow(dead_code)]
pub(crate) static SIXTY_FOURTH : &Length = &Length::Simple(ModdedLength::Plain(BasicLength::SixtyFourth));
pub(crate) static SIXTY_FOURTH: &Length =
&Length::Simple(ModdedLength::Plain(BasicLength::SixtyFourth));
#[allow(dead_code)]
pub(crate) static WHOLE_DOTTED_TRIPLET : &Length = &Length::Triplet(ModdedLength::Dotted(BasicLength::Whole));
pub(crate) static WHOLE_DOTTED_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Dotted(BasicLength::Whole));
#[allow(dead_code)]
pub(crate) static HALF_DOTTED_TRIPLET : &Length = &Length::Triplet(ModdedLength::Dotted(BasicLength::Half));
pub(crate) static HALF_DOTTED_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Dotted(BasicLength::Half));
#[allow(dead_code)]
pub(crate) static FOURTH_DOTTED_TRIPLET : &Length = &Length::Triplet(ModdedLength::Dotted(BasicLength::Fourth));
pub(crate) static FOURTH_DOTTED_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Dotted(BasicLength::Fourth));
#[allow(dead_code)]
pub(crate) static EIGHTH_DOTTED_TRIPLET : &Length = &Length::Triplet(ModdedLength::Dotted(BasicLength::Eighth));
pub(crate) static EIGHTH_DOTTED_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Dotted(BasicLength::Eighth));
#[allow(dead_code)]
pub(crate) static SIXTEENTH_DOTTED_TRIPLET : &Length = &Length::Triplet(ModdedLength::Dotted(BasicLength::Sixteenth));
pub(crate) static SIXTEENTH_DOTTED_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Dotted(BasicLength::Sixteenth));
#[allow(dead_code)]
pub(crate) static THIRTY_SECOND_DOTTED_TRIPLET : &Length = &Length::Triplet(ModdedLength::Dotted(BasicLength::ThirtySecond));
pub(crate) static THIRTY_SECOND_DOTTED_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Dotted(BasicLength::ThirtySecond));
#[allow(dead_code)]
pub(crate) static SIXTY_FOURTH_DOTTED_TRIPLET : &Length = &Length::Triplet(ModdedLength::Dotted(BasicLength::SixtyFourth));
pub(crate) static SIXTY_FOURTH_DOTTED_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Dotted(BasicLength::SixtyFourth));
#[allow(dead_code)]
pub(crate) static WHOLE_TRIPLET : &Length = &Length::Triplet(ModdedLength::Plain(BasicLength::Whole));
pub(crate) static WHOLE_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Plain(BasicLength::Whole));
#[allow(dead_code)]
pub(crate) static HALF_TRIPLET : &Length = &Length::Triplet(ModdedLength::Plain(BasicLength::Half));
pub(crate) static HALF_TRIPLET: &Length = &Length::Triplet(ModdedLength::Plain(BasicLength::Half));
#[allow(dead_code)]
pub(crate) static FOURTH_TRIPLET : &Length = &Length::Triplet(ModdedLength::Plain(BasicLength::Fourth));
pub(crate) static FOURTH_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Plain(BasicLength::Fourth));
#[allow(dead_code)]
pub(crate) static EIGHTH_TRIPLET : &Length = &Length::Triplet(ModdedLength::Plain(BasicLength::Eighth));
pub(crate) static EIGHTH_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Plain(BasicLength::Eighth));
#[allow(dead_code)]
pub(crate) static SIXTEENTH_TRIPLET : &Length = &Length::Triplet(ModdedLength::Plain(BasicLength::Sixteenth));
pub(crate) static SIXTEENTH_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Plain(BasicLength::Sixteenth));
#[allow(dead_code)]
pub(crate) static THIRTY_SECOND_TRIPLET : &Length = &Length::Triplet(ModdedLength::Plain(BasicLength::ThirtySecond));
pub(crate) static THIRTY_SECOND_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Plain(BasicLength::ThirtySecond));
#[allow(dead_code)]
pub(crate) static SIXTY_FOURTH_TRIPLET : &Length = &Length::Triplet(ModdedLength::Plain(BasicLength::SixtyFourth));
pub(crate) static SIXTY_FOURTH_TRIPLET: &Length =
&Length::Triplet(ModdedLength::Plain(BasicLength::SixtyFourth));
#[allow(dead_code)]
pub(crate) static HIT : GroupOrNote = GroupOrNote::SingleNote(Note::Hit);
pub(crate) static HIT: GroupOrNote = GroupOrNote::SingleNote(Note::Hit);
#[allow(dead_code)]
pub(crate) static REST : GroupOrNote = GroupOrNote::SingleNote(Note::Rest);
pub(crate) static REST: GroupOrNote = GroupOrNote::SingleNote(Note::Rest);
#[allow(dead_code)]
pub(crate) static ONCE : &Times = &Times(1);
pub(crate) static ONCE: &Times = &Times(1);
#[allow(dead_code)]
pub(crate) static TWICE: &Times = &Times(2);
#[allow(dead_code)]
pub(crate) static THRICE : &Times = &Times(3);
pub(crate) static THRICE: &Times = &Times(3);
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(transparent)]
@ -235,95 +289,145 @@ pub struct Times(pub u16);
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum GroupOrNote {
SingleGroup(Group),
SingleNote(Note)
SingleGroup(Group<GroupOrNote>),
SingleNote(Note),
}
use GroupOrNote::*;
/// There are two useful instantiations of this type:
/// `Group<GroupOrNote>` acts as a recursive `Group`, dsl parser uses this as return type
/// `Group<Note>` is a non-recursive group. To go from recursive groups to not-recursive ones, try using `flatten_group`.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Group {
pub notes: Vec<GroupOrNote>,
pub struct Group<T> {
pub notes: Vec<T>,
pub length: Length,
pub times: Times
pub times: Times,
}
impl Group {
impl<T> Group<T> {
pub fn empty() -> Self {
Group { notes: Vec::new(), length: FOURTH.clone(), times: Times(1) }
Group {
notes: Vec::new(),
length: FOURTH.clone(),
times: Times(1),
}
}
}
impl KnownLength for &Group {
impl KnownLength for &Group<GroupOrNote> {
fn to_128th(&self) -> u32 {
let mut acc = 0;
let note_length = self.length.to_128th();
for group in self.notes.iter() {
match group {
GroupOrNote::SingleGroup(subgroup) => { acc += subgroup.to_128th(); },
GroupOrNote::SingleNote(_) => { acc += note_length; },
GroupOrNote::SingleGroup(subgroup) => {
acc += subgroup.to_128th();
}
GroupOrNote::SingleNote(_) => {
acc += note_length;
}
}
};
}
acc * self.times.0 as u32
}
}
impl KnownLength for Group {
impl KnownLength for Group<GroupOrNote> {
fn to_128th(&self) -> u32 {
let mut acc = 0;
let note_length = self.length.to_128th();
println!("NOTE LENGTH: {}", note_length);
for group in self.notes.iter() {
match group {
GroupOrNote::SingleGroup(subgroup) => { acc += subgroup.to_128th(); },
GroupOrNote::SingleNote(_) => { acc += note_length; },
GroupOrNote::SingleGroup(subgroup) => {
acc += subgroup.to_128th();
}
GroupOrNote::SingleNote(_) => {
acc += note_length;
}
}
};
}
acc * self.times.0 as u32
}
}
impl KnownLength for Group<Note> {
fn to_128th(&self) -> u32 {
let mut acc = 0;
let note_length = self.length.to_128th();
for group in self.notes.iter() {
acc += note_length;
}
acc * self.times.0 as u32
}
}
#[test]
fn test_known_length_group() {
let group = Group { notes: vec![SingleNote(Hit), SingleNote(Hit), SingleNote(Rest), SingleNote(Hit), SingleNote(Rest), SingleNote(Hit), SingleNote(Hit), SingleNote(Rest)], length: SIXTEENTH.clone(), times: Times(1) };
let group = Group {
notes: vec![
SingleNote(Hit),
SingleNote(Hit),
SingleNote(Rest),
SingleNote(Hit),
SingleNote(Rest),
SingleNote(Hit),
SingleNote(Hit),
SingleNote(Rest),
],
length: SIXTEENTH.clone(),
times: Times(1),
};
assert_eq!(group.to_128th(), 64);
}
impl std::ops::Deref for Group {
type Target = Vec<GroupOrNote>;
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Groups(pub Vec<Group<Note>>);
fn deref(&self) -> &Self::Target {
&self.notes
impl IntoIterator for Groups {
type Item = Group<Note>;
type IntoIter = std::vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Groups(pub Vec<Group>);
impl FromIterator<Group<Note>> for Groups {
fn from_iter<T: IntoIterator<Item = Group<Note>>>(iter: T) -> Self {
Self(Vec::from_iter(iter))
}
}
impl KnownLength for Groups {
fn to_128th(&self) -> u32 {
self.0.iter().fold(0, |acc, x| { acc + x.to_128th() })
self.0.iter().fold(0, |acc, x| acc + x.to_128th())
}
}
impl KnownLength for &Groups {
fn to_128th(&self) -> u32 {
self.0.iter().fold(0, |acc, x| { acc + x.to_128th() })
self.0.iter().fold(0, |acc, x| acc + x.to_128th())
}
}
#[test]
fn test_known_length_groups() {
let groups = Groups(vec![Group { notes: vec![SingleNote(Hit), SingleNote(Hit), SingleNote(Rest), SingleNote(Hit), SingleNote(Rest), SingleNote(Hit), SingleNote(Hit), SingleNote(Rest)], length: SIXTEENTH.clone(), times: Times(1) }]);
let groups = Groups(vec![Group {
notes: vec![Hit, Hit, Rest, Hit, Rest, Hit, Hit, Rest],
length: SIXTEENTH.clone(),
times: Times(1),
}]);
assert_eq!(groups.to_128th(), 96);
}
fn hit(input: &str) -> IResult<&str, Note> {
map(char('x'), |_| { Note::Hit })(input)
map(char('x'), |_| Note::Hit)(input)
}
fn rest(input: &str) -> IResult<&str, Note> {
map(char('-'), |_| { Note::Rest })(input)
map(char('-'), |_| Note::Rest)(input)
}
fn note(input: &str) -> IResult<&str, Note> {
@ -332,95 +436,312 @@ fn note(input: &str) -> IResult<&str, Note> {
fn length_basic(input: &str) -> IResult<&str, BasicLength> {
match map_res(digit1, str::parse)(input) {
Ok((r,1)) => Ok((r, BasicLength::Whole)),
Ok((r,2)) => Ok((r, BasicLength::Half)),
Ok((r,4)) => Ok((r, BasicLength::Fourth)),
Ok((r,8)) => Ok((r, BasicLength::Eighth)),
Ok((r,16)) => Ok((r, BasicLength::Sixteenth)),
Ok((r,32)) => Ok((r, BasicLength::ThirtySecond)),
Ok((r, 1)) => Ok((r, BasicLength::Whole)),
Ok((r, 2)) => Ok((r, BasicLength::Half)),
Ok((r, 4)) => Ok((r, BasicLength::Fourth)),
Ok((r, 8)) => Ok((r, BasicLength::Eighth)),
Ok((r, 16)) => Ok((r, BasicLength::Sixteenth)),
Ok((r, 32)) => Ok((r, BasicLength::ThirtySecond)),
Ok((r, 64)) => Ok((r, BasicLength::SixtyFourth)),
Ok((r, _)) => {
Err(Err::Error(nom::error::make_error(r, nom::error::ErrorKind::Fail)))
},
Err(e) => Err(e)
Ok((r, _)) => Err(Err::Error(nom::error::make_error(
r,
nom::error::ErrorKind::Fail,
))),
Err(e) => Err(e),
}
}
fn dotted_length(input: &str) -> IResult<&str, ModdedLength> {
map(tuple((length_basic, char('.'))), |(l, _)| { ModdedLength::Dotted(l)})(input)
map(tuple((length_basic, char('.'))), |(l, _)| {
ModdedLength::Dotted(l)
})(input)
}
fn modded_length(input: &str) -> IResult<&str, ModdedLength> {
alt((dotted_length, map(length_basic, |x| {ModdedLength::Plain(x)})))(input)
alt((dotted_length, map(length_basic, |x| ModdedLength::Plain(x))))(input)
}
fn triplet_length(input: &str) -> IResult<&str, Length> {
map(tuple((modded_length, char('t'))), |(l, _)| { Length::Triplet(l)})(input)
map(tuple((modded_length, char('t'))), |(l, _)| {
Length::Triplet(l)
})(input)
}
fn tied_length(input: &str) -> IResult<&str, Length> {
map(separated_pair(modded_length, char('+'), modded_length), |(x, y)| { Length::Tied(x,y)})(input)
map(
separated_pair(modded_length, char('+'), modded_length),
|(x, y)| Length::Tied(x, y),
)(input)
}
fn length(input: &str) -> IResult<&str, Length> {
alt((triplet_length, tied_length, map(modded_length, |x| { Length::Simple(x) })))(input)
alt((
triplet_length,
tied_length,
map(modded_length, |x| Length::Simple(x)),
))(input)
}
fn times(input: &str) -> IResult<&str, Times> {
map(map_res(digit1, str::parse), |x| { Times(x) } )(input)
map(map_res(digit1, str::parse), |x| Times(x))(input)
}
fn group(input: &str) -> IResult<&str, Group> {
let repeated = map(tuple((times, char(','), length, many1(note))), |(t, _, l, n)| { (t, l, n)} );
let single = map(tuple((length, many1(note))), |(l, vn)| { (Times(1), l, vn) } );
fn group(input: &str) -> IResult<&str, Group<GroupOrNote>> {
let repeated = map(
tuple((times, char(','), length, many1(note)),
|(t, _, l, n)| (t, l, n),
);
let single = map(tuple((length, many1(note))), |(l, vn)| (Times(1), l, vn));
let (rem, (t, l, n)) = alt((repeated, single))(input)?;
Ok((rem, Group{ notes: n.iter().map(|x| GroupOrNote::SingleNote(x.clone())).collect(), length: l, times: t}))
Ok((
rem,
Group {
notes: n
.iter()
.map(|x| GroupOrNote::SingleNote(x.clone()))
.collect(),
length: l,
times: t,
},
))
}
fn delimited_group(input: &str) -> IResult<&str, Group> {
fn delimited_group(input: &str) -> IResult<&str, Group<GroupOrNote>> {
delimited(char('('), group, char(')'))(input)
}
pub fn group_or_delimited_group(input: &str) -> IResult<&str, Group> {
alt((delimited_group, group))(input)
pub fn group_or_delimited_group(input: &str) -> IResult<&str, Group<GroupOrNote>> {
alt((delimited_group, group))(input)
}
pub fn groups(input: &str) -> IResult<&str, Groups> {
all_consuming(many1(group_or_delimited_group))(input).map(|x| { (x.0, Groups(x.1)) } )
all_consuming(many1(group_or_delimited_group))(input).map(|x| (x.0, flatten_groups(x.1)))
}
pub fn flatten_group(input: Group<GroupOrNote>) -> Groups {
let mut note_group = Vec::new();
let mut out_groups = Vec::new();
input.notes.iter().for_each(|g| match g {
SingleGroup(group) => {
let isolated_group = Group { notes: note_group.clone(), length: input.length, times: Times(1) };
out_groups.push(isolated_group);
note_group.clear();
out_groups.extend(flatten_group(group.clone()).0);
},
SingleNote(note) => {
note_group.push(*note);
}
});
Groups(out_groups.iter().cloned().cycle().take(out_groups.len() * (input.times.0 as usize)).collect())
}
pub fn flatten_groups<I>(input_groups: I) -> Groups
where
I: IntoIterator<Item = Group<GroupOrNote>>
{
let mut out = Vec::new();
input_groups.into_iter().for_each(|g| {
let flattened = flatten_group(g).0;
out.extend(flattened);
});
Groups(out)
}
#[test]
fn test_flatten_group() {
let out = Groups(vec![
Group {
notes: vec![Hit],
length: *SIXTEENTH,
times: Times(1),
},
Group {
notes: vec![Rest, Hit],
length: *EIGHTH,
times: Times(3),
},
Group {
notes: vec![Hit],
length: *SIXTEENTH,
times: Times(1)
},
Group {
notes: vec![Rest, Hit],
length: *EIGHTH,
times: Times(3)
}
]);
assert_eq!(flatten_group(group("(2,16x(3,8-x))").unwrap().1), out);
}
#[test]
fn parse_length() {
assert_eq!(length("16"), Ok(("", *SIXTEENTH)));
assert_eq!(length("8+16"), Ok(("", Length::Tied(ModdedLength::Plain(BasicLength::Eighth), ModdedLength::Plain(BasicLength::Sixteenth)))));
assert_eq!(length("8t"), Ok(("", *EIGHTH_TRIPLET)));
assert_eq!(length("4.t"), Ok(("", *FOURTH_DOTTED_TRIPLET)));
assert_eq!(length("16"), Ok(("", *SIXTEENTH)));
assert_eq!(
length("8+16"),
Ok((
"",
Length::Tied(
ModdedLength::Plain(BasicLength::Eighth),
ModdedLength::Plain(BasicLength::Sixteenth)
)
))
);
assert_eq!(length("8t"), Ok(("", *EIGHTH_TRIPLET)));
assert_eq!(length("4.t"), Ok(("", *FOURTH_DOTTED_TRIPLET)));
}
#[test]
fn parse_groups() {
assert_eq!(groups("8x-(7,8xx)"), Ok(("", Groups(vec![Group { notes: vec![SingleNote(Hit), SingleNote(Rest)], length: *EIGHTH, times: Times(1) }, Group { notes: vec![SingleNote(Hit), SingleNote(Hit)], length: *EIGHTH, times: Times(7) }]))));
assert_eq!(groups("8x-(7,8xx"), Err(Err::Error(nom::error::make_error("(7,8xx", nom::error::ErrorKind::Eof))));
assert_eq!(
groups("8x-(7,8xx)"),
Ok((
"",
Groups(vec![
Group {
notes: vec![Hit, Rest],
length: *EIGHTH,
times: Times(1)
},
Group {
notes: vec![Hit, Hit],
length: *EIGHTH,
times: Times(7)
}
])
))
);
assert_eq!(
groups("8x-(7,8xx"),
Err(Err::Error(nom::error::make_error(
"(7,8xx",
nom::error::ErrorKind::Eof
)))
);
}
#[test]
fn parse_group() {
assert_eq!(group("16x--x-"), Ok(("", Group { times: *ONCE, notes: vec![HIT.clone(), REST.clone(), REST.clone(), HIT.clone(), REST.clone()], length: *SIXTEENTH})));
assert_eq!(group("8txxx"), Ok(("", Group { times: *ONCE, notes: vec![HIT.clone(), HIT.clone(), HIT.clone()], length: *EIGHTH_TRIPLET})));
assert_eq!(group("16+32x-xx"), Ok(("", Group { times: *ONCE, notes: vec![HIT.clone(), REST.clone(), HIT.clone(), HIT.clone()], length: Length::Tied(ModdedLength::Plain(BasicLength::Sixteenth), ModdedLength::Plain(BasicLength::ThirtySecond))})));
assert_eq!(group("3,16xx"), Ok(("", Group { times: *THRICE, length: *SIXTEENTH, notes: vec![HIT.clone(), HIT.clone()] })));
assert_eq!(
group("16x--x-"),
Ok((
"",
Group {
times: *ONCE,
notes: vec![
HIT.clone(),
REST.clone(),
REST.clone(),
HIT.clone(),
REST.clone()
],
length: *SIXTEENTH
}
))
);
assert_eq!(
group("8txxx"),
Ok((
"",
Group {
times: *ONCE,
notes: vec![HIT.clone(), HIT.clone(), HIT.clone()],
length: *EIGHTH_TRIPLET
}
))
);
assert_eq!(
group("16+32x-xx"),
Ok((
"",
Group {
times: *ONCE,
notes: vec![HIT.clone(), REST.clone(), HIT.clone(), HIT.clone()],
length: Length::Tied(
ModdedLength::Plain(BasicLength::Sixteenth),
ModdedLength::Plain(BasicLength::ThirtySecond)
)
}
))
);
assert_eq!(
group("3,16xx"),
Ok((
"",
Group {
times: *THRICE,
length: *SIXTEENTH,
notes: vec![HIT.clone(), HIT.clone()]
}
))
);
}
#[test]
fn parse_delimited_group() {
assert_eq!(delimited_group("(3,16x--x-)"), Ok(("", Group { times: *THRICE, notes: vec![HIT.clone(), REST.clone(), REST.clone(), HIT.clone(), REST.clone()], length: *SIXTEENTH})));
assert_eq!(
delimited_group("(3,16x--x-)"),
Ok((
"",
Group {
times: *THRICE,
notes: vec![
HIT.clone(),
REST.clone(),
REST.clone(),
HIT.clone(),
REST.clone()
],
length: *SIXTEENTH
}
))
);
}
#[test]
fn parse_group_or_delimited_group() {
assert_eq!(group_or_delimited_group("(3,16x--x-)"), Ok(("", Group { times: *THRICE, notes: vec![HIT.clone(), REST.clone(), REST.clone(), HIT.clone(), REST.clone()], length: *SIXTEENTH})));
assert_eq!(group_or_delimited_group("16x--x-"), Ok(("", Group { times: *ONCE, notes: vec![HIT.clone(), REST.clone(), REST.clone(), HIT.clone(), REST.clone()], length: *SIXTEENTH})));
assert_eq!(group_or_delimited_group("(7,8xx"), Err(Err::Error(nom::error::make_error("(7,8xx", nom::error::ErrorKind::Digit))));
assert_eq!(
group_or_delimited_group("(3,16x--x-)"),
Ok((
"",
Group {
times: *THRICE,
notes: vec![
HIT.clone(),
REST.clone(),
REST.clone(),
HIT.clone(),
REST.clone()
],
length: *SIXTEENTH
}
))
);
assert_eq!(
group_or_delimited_group("16x--x-"),
Ok((
"",
Group {
times: *ONCE,
notes: vec![
HIT.clone(),
REST.clone(),
REST.clone(),
HIT.clone(),
REST.clone()
],
length: *SIXTEENTH
}
))
);
assert_eq!(
group_or_delimited_group("(7,8xx"),
Err(Err::Error(nom::error::make_error(
"(7,8xx",
nom::error::ErrorKind::Digit
)))
);
}
// “x” hit

View file

@ -14,7 +14,7 @@ use midly::{MetaMessage, TrackEvent};
use crate::dsl::dsl::{
group_or_delimited_group, groups, BasicLength, Group, GroupOrNote, Groups, KnownLength, Length,
ModdedLength, Note, Times,
ModdedLength, Note, Times, flatten_group,
};
use crate::midi::time::TimeSignature;
use GroupOrNote::*;
@ -201,7 +201,21 @@ impl<T> EventGrid<T> {
}
}
// FIXME: add a mutable version for use in `flatten_groups`
impl<T> EventGrid<T>
where
T: Clone
{
pub fn extend(&self, other: &EventGrid<T>) -> EventGrid<T> {
let combined = self.events.iter().cloned().chain(other.events.iter().cloned()).collect();
EventGrid { events: combined, length: self.length + other.length }
}
}
// FIXME: add a mutable version for use in `groups_to_event_grid`
/// Adds two EventGrids together, manipulates the time of the right `EventGrid` by
/// adding the length of the left one to timings.
/// If you need to concat two `EventGrid`s without messing up with times, then use `extend`.
impl<T: Add<Tick, Output = T> + Clone + Ord + std::fmt::Debug> Add for EventGrid<T> {
type Output = EventGrid<T>;
@ -404,12 +418,12 @@ impl MidiTempo {
/// Returns an EventGrid and a total length. Length is needed as a group can end with rests that are not in the grid,
/// so we need it to cycle the group.
fn flatten_group(
fn group_to_event_grid(
Group {
notes,
length,
times,
}: &Group,
}: &Group<Note>,
part: Part,
start: &Tick,
) -> EventGrid<Tick> {
@ -418,18 +432,19 @@ fn flatten_group(
let mut grid = EventGrid::empty();
notes.iter().for_each(|entry| {
match entry {
SingleGroup(group) => {
let mut eg = flatten_group(&group, part, &time.clone());
grid.events.append(&mut eg.events);
grid.length = grid.length + eg.length;
time = time + grid.length;
}
SingleNote(Note::Rest) => {
// SingleGroup(group) => {
// let mut eg = group_to_event_grid(&group, part, &time.clone());
// println!("SINGLE GROUP EVENTGRID: {:?}", eg);
// grid.events.append(&mut eg.events);
// grid.length = grid.length + eg.length;
// time = time + grid.length;
// }
Rest => {
let rest_end = time + note_length;
time = rest_end;
grid.length = rest_end;
}
SingleNote(Note::Hit) => {
Hit => {
let note_end = time + note_length;
let note_on = Event {
tick: time,
@ -451,11 +466,11 @@ fn flatten_group(
}
#[test]
fn test_flatten_group() {
fn test_group_to_event_grid() {
let start_time = Tick(0);
assert_eq!(
flatten_group(
&group_or_delimited_group("(2,8x--)").unwrap().1,
group_to_event_grid(
flatten_group(group_or_delimited_group("(2,8x--)").unwrap().1).0.first().unwrap(),
KickDrum,
&start_time
),
@ -500,13 +515,17 @@ fn test_cycle_grid() {
/// Takes multiple `Group`s and turn them into a single `EventGrid`.
/// The point of it is to combine timings into a single MIDI track.
fn flatten_groups(part: Part, groups: &Groups) -> EventGrid<Tick> {
fn groups_to_event_grid(part: Part, groups: &Groups) -> EventGrid<Tick> {
let mut time: Tick = Tick(0);
let mut grid: EventGrid<Tick> = EventGrid::empty();
groups.0.iter().for_each(|group| {
// `flatten_group` doesn't know at which point in time groups starts unless we pass
// `group_to_event_grid` doesn't know at which point in time groups starts unless we pass
// `time` explicitly. Only the first `Group` in `Groups` starts at zero.
grid = grid.clone() + flatten_group(group, part, &time);
let flattened_group = group_to_event_grid(group, part, &time);
println!("(groups_to_event_grid) FLATTENED GROUP: {:?}", flattened_group);
// Note that using `+` is wrong here as it's messing with timings and it really shouldn't
grid = grid.extend(&flattened_group);
time = grid.length;
});
grid
@ -574,13 +593,13 @@ impl Iterator for EventIterator {
#[test]
fn test_event_iterator_impl() {
let empty = EventGrid::empty();
let kick1 = flatten_group(
&group_or_delimited_group("(4x-)").unwrap().1,
let kick1 = group_to_event_grid(
&flatten_group(group_or_delimited_group("(4x-)").unwrap().1).0.first().unwrap(),
KickDrum,
&mut Tick(0),
);
let snare1 = flatten_group(
&group_or_delimited_group("4-x").unwrap().1,
let snare1 = group_to_event_grid(
&flatten_group(group_or_delimited_group("(4-x)").unwrap().1).0.first().unwrap(),
SnareDrum,
&mut Tick(0),
);
@ -642,7 +661,7 @@ fn test_event_iterator_impl() {
/// Calling .collect() on this EventIterator should produce an `EventGrid`.
///
/// Returns time as a number of ticks from beginning, has to be turned into the midi delta-time.
fn flatten_to_iterator(
fn merge_to_iterator(
groups: BTreeMap<Part, Groups>,
time_signature: TimeSignature,
) -> EventIterator {
@ -677,7 +696,7 @@ fn flatten_to_iterator(
let length_128th = length_map.get(part).unwrap();
let times = length_limit / length_128th;
println!("TIMES: {}", times);
let flattened = flatten_groups(*part, groups);
let flattened = groups_to_event_grid(*part, groups);
println!("FLATTENED: {:?}", flattened);
(flattened, times)
}
@ -702,14 +721,14 @@ fn flatten_to_iterator(
}
#[test]
fn test_flatten_to_iterator() {
fn test_merge_to_iterator() {
let snare_group = "8-x--x-";
let kick_group = "16xx-x-xx-";
let kick_events = vec![Event { tick: Tick(0), event_type: NoteOn(KickDrum) }, Event { tick: Tick(12), event_type: NoteOff(KickDrum) }, Event { tick: Tick(12), event_type: NoteOn(KickDrum) }, Event { tick: Tick(24), event_type: NoteOff(KickDrum) }, Event { tick: Tick(36), event_type: NoteOn(KickDrum) }, Event { tick: Tick(48), event_type: NoteOff(KickDrum) }, Event { tick: Tick(60), event_type: NoteOn(KickDrum) }, Event { tick: Tick(72), event_type: NoteOff(KickDrum) }, Event { tick: Tick(72), event_type: NoteOn(KickDrum) }, Event { tick: Tick(84), event_type: NoteOff(KickDrum) }, Event { tick: Tick(96), event_type: NoteOn(KickDrum) }, Event { tick: Tick(108), event_type: NoteOff(KickDrum) }, Event { tick: Tick(108), event_type: NoteOn(KickDrum) }, Event { tick: Tick(120), event_type: NoteOff(KickDrum) }, Event { tick: Tick(132), event_type: NoteOn(KickDrum) }, Event { tick: Tick(144), event_type: NoteOff(KickDrum) }, Event { tick: Tick(156), event_type: NoteOn(KickDrum) }, Event { tick: Tick(168), event_type: NoteOff(KickDrum) }, Event { tick: Tick(168), event_type: NoteOn(KickDrum) }, Event { tick: Tick(180), event_type: NoteOff(KickDrum) }];
let snare_events = vec![Event { tick: Tick(24), event_type: NoteOn(SnareDrum) }, Event { tick: Tick(48), event_type: NoteOff(SnareDrum) }, Event { tick: Tick(96), event_type: NoteOn(SnareDrum) }, Event { tick: Tick(120), event_type: NoteOff(SnareDrum) }, Event { tick: Tick(24+144), event_type: NoteOn(SnareDrum) }, Event { tick: Tick(48+144), event_type: NoteOff(SnareDrum) }, Event { tick: Tick(96+144), event_type: NoteOn(SnareDrum) }, Event { tick: Tick(120+144), event_type: NoteOff(SnareDrum) }, Event { tick: Tick(24+288), event_type: NoteOn(SnareDrum) }, Event { tick: Tick(48+288), event_type: NoteOff(SnareDrum) }, Event { tick: Tick(96+288), event_type: NoteOn(SnareDrum) }, Event { tick: Tick(120+288), event_type: NoteOff(SnareDrum) }, Event { tick: Tick(24+144*3), event_type: NoteOn(SnareDrum) }, Event { tick: Tick(48+144*3), event_type: NoteOff(SnareDrum) }, Event { tick: Tick(96+144*3), event_type: NoteOn(SnareDrum) }, Event { tick: Tick(120+144*3), event_type: NoteOff(SnareDrum) }];
let four_fourth = TimeSignature::from_str("4/4").unwrap();
let flattened_kick_and_snare = flatten_to_iterator(
let flattened_kick_and_snare = merge_to_iterator(
BTreeMap::from_iter([
(KickDrum, groups("16xx-x-xx-").unwrap().1),
(SnareDrum, groups("8-x--x-").unwrap().1),
@ -718,8 +737,8 @@ fn test_flatten_to_iterator() {
)
.collect::<Vec<Event<Tick>>>();
assert_eq!(flatten_to_iterator(BTreeMap::from_iter([(KickDrum, groups(kick_group).unwrap().1)]), four_fourth).collect::<Vec<Event<Tick>>>(), kick_events);
assert_eq!(flatten_to_iterator(BTreeMap::from_iter([(SnareDrum, groups(snare_group).unwrap().1)]), four_fourth).collect::<Vec<Event<Tick>>>(), snare_events);
assert_eq!(merge_to_iterator(BTreeMap::from_iter([(KickDrum, groups(kick_group).unwrap().1)]), four_fourth).collect::<Vec<Event<Tick>>>(), kick_events);
assert_eq!(merge_to_iterator(BTreeMap::from_iter([(SnareDrum, groups(snare_group).unwrap().1)]), four_fourth).collect::<Vec<Event<Tick>>>(), snare_events);
assert_eq!(
kick_events
.iter()
@ -765,7 +784,7 @@ fn create_tracks<'a>(
text_event: &'a str,
midi_tempo: MidiTempo
) -> Vec<Vec<midly::TrackEvent<'a>>> {
let events_iter = flatten_to_iterator(parts_and_groups, time_signature);
let events_iter = merge_to_iterator(parts_and_groups, time_signature);
let events: Vec<Event<Tick>> = events_iter.collect();
// Notice this time can be incorrect, but it shouldn't matter.
let time = match events.last() {