#include "hiopl.h" #include #include "JuceHeader.h" // A wrapper around the DOSBox and ZDoom OPL emulators. Hiopl::Hiopl(Emulator emulator) { //InitCaptureVariables(); adlib = new DBOPL::Handler(); // channels reordered to match // 'in-memory' order in DOSBox emulator _op1offset[1] = 0x0; _op1offset[2] = 0x1; _op1offset[3] = 0x2; _op1offset[4] = 0x8; _op1offset[5] = 0x9; _op1offset[6] = 0xa; _op1offset[7] = 0x10; _op1offset[8] = 0x11; _op1offset[9] = 0x12; _op2offset[1] = 0x3; _op2offset[2] = 0x4; _op2offset[3] = 0x5; _op2offset[4] = 0xb; _op2offset[5] = 0xc; _op2offset[6] = 0xd; _op2offset[7] = 0x13; _op2offset[8] = 0x14; _op2offset[9] = 0x15; SetEmulator(emulator); _ClearRegisters(); } void Hiopl::_ClearRegisters() { for (int i = 0; i < 256; i++) { _WriteReg(i, 0); } } void Hiopl::SetEmulator(Emulator _emulator) { this->emulator = _emulator; } void Hiopl::Generate(int length, float* buffer) { intermediateBufIdx = (intermediateBufIdx + 1) % INTERMEDIATE_BUF_N; Bit32s *iBuf = intermediateBuf[intermediateBufIdx]; int fullCalls = length / 512; // the emulator is limited to 512 bytes per call int c = 0; for (; c < fullCalls; c++) { adlib->Generate(512, iBuf + (c * 512)); } // final (or only) call if (length % 512 > 0) { adlib->Generate(length % 512, iBuf + (c * 512)); } for (int i = 0; i < length; i++) { // Magic divisor taken from ZDoom wrapper for DOSBox emulator, line 892 // https://github.com/rheit/zdoom/blob/master/src/oplsynth/dosbox/opl.cpp const float y = (float)(iBuf[i]) / 10240.0f; // http://stackoverflow.com/questions/427477/fastest-way-to-clamp-a-real-fixed-floating-point-value const float z = y < -1.0f ? -1.0f : y; buffer[i] = z > 1.0f ? 1.0f : z; } } void Hiopl::SetSampleRate(int hz) { adlib->Init(hz); EnableWaveformControl(); for (int i = 0; i < OPL_N_REG; i++) { adlib->WriteReg(i, regCache[i]); } } void Hiopl::_WriteReg(Bit32u reg, Bit8u value, Bit8u mask) { if (mask > 0) { value = (regCache[reg] & (~mask)) | (value & mask); } // Write to the registers of both emulators. //if (DOSBOX == emulator) { adlib->WriteReg(reg, value); //} else if (ZDOOM == emulator) { // zdoom->WriteReg(reg, value); //} regCache[reg] = value; } Bit8u Hiopl::_ReadReg(Bit32u reg) { return regCache[reg]; } void Hiopl::_ClearRegBits(Bit32u reg, Bit8u mask) { _WriteReg(reg, regCache[reg] & ~mask); } void Hiopl::EnableWaveformControl() { _WriteReg(0x01, 0x20); } void Hiopl::SetWaveform(int ch, int osc, Waveform wave) { int offset = this->_GetOffset(ch, osc); _WriteReg(0xe0+offset, (Bit8u)wave, 0x7); } void Hiopl::SetAttenuation(int ch, int osc, int level) { int offset = this->_GetOffset(ch, osc); _WriteReg(0x40+offset, (Bit8u)level, 0x3f); } void Hiopl::SetKsl(int ch, int osc, int level) { int offset = this->_GetOffset(ch, osc); _WriteReg(0x40+offset, (Bit8u)(level<<6), 0xc0); } void Hiopl::SetFrequencyMultiple(int ch, int osc, FreqMultiple mult) { int offset = this->_GetOffset(ch, osc); _WriteReg(0x20+offset, (Bit8u)mult, 0xf); } void Hiopl::SetEnvelopeAttack(int ch, int osc, int t) { int offset = this->_GetOffset(ch, osc); _WriteReg(0x60+offset, (Bit8u)t<<4, 0xf0); } void Hiopl::SetEnvelopeDecay(int ch, int osc, int t) { int offset = this->_GetOffset(ch, osc); _WriteReg(0x60+offset, (Bit8u)t, 0x0f); } void Hiopl::SetEnvelopeSustain(int ch, int osc, int level) { int offset = this->_GetOffset(ch, osc); _WriteReg(0x80+offset, (Bit8u)level<<4, 0xf0); } void Hiopl::SetEnvelopeRelease(int ch, int osc, int t) { int offset = this->_GetOffset(ch, osc); _WriteReg(0x80+offset, (Bit8u)t, 0x0f); } void Hiopl::EnableTremolo(int ch, int osc, bool enable) { int offset = this->_GetOffset(ch, osc); _WriteReg(0x20+offset, enable ? 0x80 : 0x0, 0x80); } void Hiopl::EnableVibrato(int ch, int osc, bool enable) { int offset = this->_GetOffset(ch, osc); _WriteReg(0x20+offset, enable ? 0x40 : 0x0, 0x40); } void Hiopl::TremoloDepth(bool high) { _WriteReg(0xbd, high ? 0x80 : 0x0, 0x80); } void Hiopl::VibratoDepth(bool high) { _WriteReg(0xbd, high ? 0x40 : 0x0, 0x40); } void Hiopl::EnableSustain(int ch, int osc, bool enable) { int offset = this->_GetOffset(ch, osc); _WriteReg(0x20+offset, enable ? 0x20 : 0x0, 0x20); } void Hiopl::EnableKsr(int ch, int osc, bool enable) { int offset = this->_GetOffset(ch, osc); _WriteReg(0x20+offset, enable ? 0x10 : 0x0, 0x10); } void Hiopl::EnableAdditiveSynthesis(int ch, bool enable) { int offset = this->_GetOffset(ch); _WriteReg(0xc0+offset, enable ? 0x1 : 0x0, 0x1); } void Hiopl::SetModulatorFeedback(int ch, int level) { int offset = this->_GetOffset(ch); _WriteReg(0xc0+offset, (Bit8u)level << 1, 0x0e); } void Hiopl::SetPercussionMode(bool enable) { _WriteReg(0xbd, enable ? 0x20 : 0x0, 0x20); } void Hiopl::HitPercussion(Drum drum) { Bit8u mask = (Bit8u)drum; _WriteReg(0xbd, mask, mask); } void Hiopl::ReleasePercussion() { _WriteReg(0xbd, 0x0, 0x1f); } void Hiopl::KeyOn(int ch, float frqHz) { Hiopl::SetFrequency(ch, frqHz, true); } void Hiopl::KeyOff(int ch) { int offset = this->_GetOffset(ch); _ClearRegBits(0xb0+offset, 0x20); } static const char* STATE[] = { "-", "R", "S", "D", "A", }; // in-memory ordering of DOSBox emulator static int DOSBOX_CH_MAP[] = { -1, // channel numbering starts at 1 0, 2, // 1 4, // 2 1, // 3 3, // 4 5, 6, 7, 8, 9, }; const char* Hiopl::GetState(int ch) const { int dosboxCh = DOSBOX_CH_MAP[ch]; return STATE[adlib->chip.chan[dosboxCh].op[1].state]; } bool Hiopl::IsActive(int ch) { // check carrier envelope state return DBOPL::Operator::State::OFF != adlib->chip.chan[ch - 1].op[1].state; } void Hiopl::SetFrequency(int ch, float frqHz, bool keyOn) { unsigned int fnum, block; int offset = this->_GetOffset(ch); // ZDoom emulator seems to be tuned down by two semitones for some reason. Sample rate difference? //if (ZDOOM == emulator) { // frqHz *= 1.122461363636364f; //} _milliHertzToFnum((unsigned int)(frqHz * 1000.0), &fnum, &block); _WriteReg(0xa0+offset, fnum % 0x100); uint8 trig = (regCache[0xb0+offset] & 0x20) | (keyOn ? 0x20 : 0x00); _WriteReg(0xb0+offset, trig|((block&0x7)<<2)|(0x3&(fnum/0x100))); } // from libgamemusic, opl-util.cpp void Hiopl::_milliHertzToFnum(unsigned int milliHertz, unsigned int *fnum, unsigned int *block, unsigned int conversionFactor) { // Special case to avoid divide by zero if (milliHertz == 0) { *block = 0; // actually any block will work *fnum = 0; return; } // Special case for frequencies too high to produce if (milliHertz > 6208431) { *block = 7; *fnum = 1023; return; } // This is a bit more efficient and doesn't need log2() from math.h if (milliHertz > 3104215) *block = 7; else if (milliHertz > 1552107) *block = 6; else if (milliHertz > 776053) *block = 5; else if (milliHertz > 388026) *block = 4; else if (milliHertz > 194013) *block = 3; else if (milliHertz > 97006) *block = 2; else if (milliHertz > 48503) *block = 1; else *block = 0; // Slightly more efficient version *fnum = (unsigned int)(((unsigned long long)milliHertz << (20 - *block)) / (conversionFactor * 1000.0) + 0.5); if ((*block == 7) && (*fnum > 1023)) { // frequency out of range, clipping to maximum value. *fnum = 1023; } assert(*block <= 7); assert(*fnum < 1024); return; } Hiopl::~Hiopl() { }; // Check that _GetOffset parameters are in range. bool Hiopl::_CheckParams(int ch, int osc=OSCILLATORS) { return ch > 0 && ch <= CHANNELS && osc > 0 && osc <= OSCILLATORS; } // The register offset for parameters that affect a specific oscillator. int Hiopl::_GetOffset(int ch, int osc) { assert(_CheckParams(ch, osc)); return (1 == osc) ? _op1offset[ch] : _op2offset[ch]; } // The register offset for parameters that affect the entire channel. int Hiopl::_GetOffset(int ch) { assert(_CheckParams(ch)); return ch - 1; }