2
0
Fork 0
OPL/Source/nkopl3.cpp

1019 lines
26 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2013-2015 Nuke.YKT(Alexey Khokholov)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
Nuked Yamaha YMF262(aka OPL3) emulator.
Thanks:
MAME Development Team(Jarek Burczynski, Tatsuyuki Satoh):
Feedback and Rhythm part calculation information.
forums.submarine.org.uk(carbon14, opl3):
Tremolo and phase generator calculation information.
OPLx decapsulated(Matthew Gambrell, Olli Niemitalo):
OPL2 ROMs.
*/
//version 1.6
/* Changelog:
v1.1:
Vibrato's sign fix.
v1.2:
Operator key fix.
Corrected 4-operator mode.
Corrected rhythm mode.
Some small fixes.
v1.2.1:
Small envelope generator fix.
v1.3:
Complete rewrite.
v1.4:
New envelope and waveform generator.
Some small fixes.
v1.4.1:
Envelope generator rate calculation fix.
v1.4.2:
Version for ZDoom.
v1.5:
Optimizations.
v1.6:
Improved emulation output.
*/
#include <stdlib.h>
#include <string.h>
#include "nkopl3.h"
//
// Envelope generator
//
typedef Bit16s(*envelope_sinfunc)(Bit16u phase, Bit16u envelope);
typedef void(*envelope_genfunc)(opl_slot *slott);
Bit16s envelope_calcexp(Bit32u level) {
if (level > 0x1fff) {
level = 0x1fff;
}
return ((exprom[(level & 0xff) ^ 0xff] | 0x400) << 1) >> (level >> 8);
}
Bit16s envelope_calcsin0(Bit16u phase, Bit16u envelope) {
phase &= 0x3ff;
Bit16u out = 0;
Bit16u neg = 0;
if (phase & 0x200) {
neg = 0xffff; // ~0;
}
if (phase & 0x100) {
out = logsinrom[(phase & 0xff) ^ 0xff];
}
else {
out = logsinrom[phase & 0xff];
}
return envelope_calcexp(out + (envelope << 3)) ^ neg;
}
Bit16s envelope_calcsin1(Bit16u phase, Bit16u envelope) {
phase &= 0x3ff;
Bit16u out = 0;
if (phase & 0x200) {
out = 0x1000;
}
else if (phase & 0x100) {
out = logsinrom[(phase & 0xff) ^ 0xff];
}
else {
out = logsinrom[phase & 0xff];
}
return envelope_calcexp(out + (envelope << 3));
}
Bit16s envelope_calcsin2(Bit16u phase, Bit16u envelope) {
phase &= 0x3ff;
Bit16u out = 0;
if (phase & 0x100) {
out = logsinrom[(phase & 0xff) ^ 0xff];
}
else {
out = logsinrom[phase & 0xff];
}
return envelope_calcexp(out + (envelope << 3));
}
Bit16s envelope_calcsin3(Bit16u phase, Bit16u envelope) {
phase &= 0x3ff;
Bit16u out = 0;
if (phase & 0x100) {
out = 0x1000;
}
else {
out = logsinrom[phase & 0xff];
}
return envelope_calcexp(out + (envelope << 3));
}
Bit16s envelope_calcsin4(Bit16u phase, Bit16u envelope) {
phase &= 0x3ff;
Bit16u out = 0;
Bit16u neg = 0;
if ((phase & 0x300) == 0x100) {
neg = 0xffff; // ~0;
}
if (phase & 0x200) {
out = 0x1000;
}
else if (phase & 0x80) {
out = logsinrom[((phase ^ 0xff) << 1) & 0xff];
}
else {
out = logsinrom[(phase << 1) & 0xff];
}
return envelope_calcexp(out + (envelope << 3)) ^ neg;
}
Bit16s envelope_calcsin5(Bit16u phase, Bit16u envelope) {
phase &= 0x3ff;
Bit16u out = 0;
if (phase & 0x200) {
out = 0x1000;
}
else if (phase & 0x80) {
out = logsinrom[((phase ^ 0xff) << 1) & 0xff];
}
else {
out = logsinrom[(phase << 1) & 0xff];
}
return envelope_calcexp(out + (envelope << 3));
}
Bit16s envelope_calcsin6(Bit16u phase, Bit16u envelope) {
phase &= 0x3ff;
Bit16u neg = 0;
if (phase & 0x200) {
neg = 0xffff; // ~0;
}
return envelope_calcexp(envelope << 3) ^ neg;
}
Bit16s envelope_calcsin7(Bit16u phase, Bit16u envelope) {
phase &= 0x3ff;
Bit16u out = 0;
Bit16u neg = 0;
if (phase & 0x200) {
neg = 0xffff; // ~0;
phase = (phase & 0x1ff) ^ 0x1ff;
}
out = phase << 3;
return envelope_calcexp(out + (envelope << 3)) ^ neg;
}
envelope_sinfunc envelope_sin[8] = {
envelope_calcsin0,
envelope_calcsin1,
envelope_calcsin2,
envelope_calcsin3,
envelope_calcsin4,
envelope_calcsin5,
envelope_calcsin6,
envelope_calcsin7
};
void envelope_gen_off(opl_slot *slott);
void envelope_gen_attack(opl_slot *slott);
void envelope_gen_decay(opl_slot *slott);
void envelope_gen_sustain(opl_slot *slott);
void envelope_gen_release(opl_slot *slott);
envelope_genfunc envelope_gen[5] = {
envelope_gen_off,
envelope_gen_attack,
envelope_gen_decay,
envelope_gen_sustain,
envelope_gen_release
};
enum envelope_gen_num {
envelope_gen_num_off = 0,
envelope_gen_num_attack = 1,
envelope_gen_num_decay = 2,
envelope_gen_num_sustain = 3,
envelope_gen_num_release = 4,
envelope_gen_num_change = 5
};
Bit8u envelope_calc_rate(opl_slot *slot, Bit8u reg_rate) {
if (reg_rate == 0x00) {
return 0x00;
}
Bit8u rate = (reg_rate << 2) + (slot->reg_ksr ? slot->channel->ksv : (slot->channel->ksv >> 2));
if (rate > 0x3c) {
rate = 0x3c;
}
return rate;
}
void envelope_update_ksl(opl_slot *slot) {
Bit16s ksl = (kslrom[slot->channel->f_num >> 6] << 2) - ((0x08 - slot->channel->block) << 5);
if (ksl < 0) {
ksl = 0;
}
slot->eg_ksl = (Bit8u)ksl;
}
void envelope_update_rate(opl_slot *slot) {
switch (slot->eg_gen) {
case envelope_gen_num_off:
slot->eg_rate = 0;
break;
case envelope_gen_num_attack:
slot->eg_rate = envelope_calc_rate(slot, slot->reg_ar);
break;
case envelope_gen_num_decay:
slot->eg_rate = envelope_calc_rate(slot, slot->reg_dr);
break;
case envelope_gen_num_sustain:
case envelope_gen_num_release:
slot->eg_rate = envelope_calc_rate(slot, slot->reg_rr);
break;
}
}
void envelope_gen_off(opl_slot *slot) {
slot->eg_rout = 0x1ff;
}
void envelope_gen_attack(opl_slot *slot) {
if (slot->eg_rout == 0x00) {
slot->eg_gen = envelope_gen_num_decay;
envelope_update_rate(slot);
return;
}
slot->eg_rout += ((~slot->eg_rout) *slot->eg_inc) >> 3;
if (slot->eg_rout < 0x00) {
slot->eg_rout = 0x00;
}
}
void envelope_gen_decay(opl_slot *slot) {
if (slot->eg_rout >= slot->reg_sl << 4) {
slot->eg_gen = envelope_gen_num_sustain;
envelope_update_rate(slot);
return;
}
slot->eg_rout += slot->eg_inc;
}
void envelope_gen_sustain(opl_slot *slot) {
if (!slot->reg_type) {
envelope_gen_release(slot);
}
}
void envelope_gen_release(opl_slot *slot) {
if (slot->eg_rout >= 0x1ff) {
slot->eg_gen = envelope_gen_num_off;
slot->eg_rout = 0x1ff;
envelope_update_rate(slot);
return;
}
slot->eg_rout += slot->eg_inc;
}
void envelope_calc(opl_slot *slot) {
Bit8u rate_h, rate_l;
rate_h = slot->eg_rate >> 2;
rate_l = slot->eg_rate & 3;
Bit8u inc = 0;
if (eg_incsh[rate_h] > 0) {
if ((slot->chip->timer & ((1 << eg_incsh[rate_h]) - 1)) == 0) {
inc = eg_incstep[eg_incdesc[rate_h]][rate_l][((slot->chip->timer) >> eg_incsh[rate_h]) & 0x07];
}
}
else {
inc = eg_incstep[eg_incdesc[rate_h]][rate_l][slot->chip->timer & 0x07] << (-eg_incsh[rate_h]);
}
slot->eg_inc = inc;
slot->eg_out = slot->eg_rout + (slot->reg_tl << 2) + (slot->eg_ksl >> kslshift[slot->reg_ksl]) + *slot->trem;
envelope_gen[slot->eg_gen](slot);
}
void eg_keyon(opl_slot *slot, Bit8u type) {
if (!slot->key) {
slot->eg_gen = envelope_gen_num_attack;
envelope_update_rate(slot);
if ((slot->eg_rate >> 2) == 0x0f) {
slot->eg_gen = envelope_gen_num_decay;
envelope_update_rate(slot);
slot->eg_rout = 0x00;
}
slot->pg_phase = 0x00;
}
slot->key |= type;
}
void eg_keyoff(opl_slot *slot, Bit8u type) {
if (slot->key) {
slot->key &= (~type);
if (!slot->key) {
slot->eg_gen = envelope_gen_num_release;
envelope_update_rate(slot);
}
}
}
//
// Phase Generator
//
void pg_generate(opl_slot *slot) {
Bit16u f_num = slot->channel->f_num;
if (slot->reg_vib) {
Bit8u f_num_high = f_num >> (7 + vib_table[(slot->chip->timer >> 10) & 0x07] + (0x01 - slot->chip->dvb));
f_num += f_num_high * vibsgn_table[(slot->chip->timer >> 10) & 0x07];
}
slot->pg_phase += (((f_num << slot->channel->block) >> 1) * mt[slot->reg_mult]) >> 1;
}
//
// Noise Generator
//
void n_generate(opl_chip *chip) {
if (chip->noise & 0x01) {
chip->noise ^= 0x800302;
}
chip->noise >>= 1;
}
//
// Slot
//
void slot_write20(opl_slot *slot, Bit8u data) {
if ((data >> 7) & 0x01) {
slot->trem = &slot->chip->tremval;
}
else {
slot->trem = (Bit8u*)&slot->chip->zeromod;
}
slot->reg_vib = (data >> 6) & 0x01;
slot->reg_type = (data >> 5) & 0x01;
slot->reg_ksr = (data >> 4) & 0x01;
slot->reg_mult = data & 0x0f;
envelope_update_rate(slot);
}
void slot_write40(opl_slot *slot, Bit8u data) {
slot->reg_ksl = (data >> 6) & 0x03;
slot->reg_tl = data & 0x3f;
envelope_update_ksl(slot);
}
void slot_write60(opl_slot *slot, Bit8u data) {
slot->reg_ar = (data >> 4) & 0x0f;
slot->reg_dr = data & 0x0f;
envelope_update_rate(slot);
}
void slot_write80(opl_slot *slot, Bit8u data) {
slot->reg_sl = (data >> 4) & 0x0f;
if (slot->reg_sl == 0x0f) {
slot->reg_sl = 0x1f;
}
slot->reg_rr = data & 0x0f;
envelope_update_rate(slot);
}
void slot_writee0(opl_slot *slot, Bit8u data) {
slot->reg_wf = data & 0x07;
if (slot->chip->newm == 0x00) {
slot->reg_wf &= 0x03;
}
}
void slot_generatephase(opl_slot *slot, Bit16u phase) {
slot->out = envelope_sin[slot->reg_wf](phase, slot->eg_out);
}
void slot_generate(opl_slot *slot) {
slot->out = envelope_sin[slot->reg_wf]((Bit16u)(slot->pg_phase >> 9) + (*slot->mod), slot->eg_out);
}
void slot_generatezm(opl_slot *slot) {
slot->out = envelope_sin[slot->reg_wf]((Bit16u)(slot->pg_phase >> 9), slot->eg_out);
}
void slot_calcfb(opl_slot *slot) {
slot->prout[1] = slot->prout[0];
slot->prout[0] = slot->out;
if (slot->channel->fb != 0x00) {
slot->fbmod = (slot->prout[0] + slot->prout[1]) >> (0x09 - slot->channel->fb);
}
else {
slot->fbmod = 0;
}
}
//
// Channel
//
void chan_setupalg(opl_channel *channel);
void chan_updaterhythm(opl_chip *chip, Bit8u data) {
chip->rhy = data & 0x3f;
if (chip->rhy & 0x20) {
opl_channel *channel6 = &chip->channel[6];
opl_channel *channel7 = &chip->channel[7];
opl_channel *channel8 = &chip->channel[8];
channel6->out[0] = &channel6->slots[1]->out;
channel6->out[1] = &channel6->slots[1]->out;
channel6->out[2] = &chip->zeromod;
channel6->out[3] = &chip->zeromod;
channel7->out[0] = &channel7->slots[0]->out;
channel7->out[1] = &channel7->slots[0]->out;
channel7->out[2] = &channel7->slots[1]->out;
channel7->out[3] = &channel7->slots[1]->out;
channel8->out[0] = &channel8->slots[0]->out;
channel8->out[1] = &channel8->slots[0]->out;
channel8->out[2] = &channel8->slots[1]->out;
channel8->out[3] = &channel8->slots[1]->out;
for (Bit8u chnum = 6; chnum < 9; chnum++) {
chip->channel[chnum].chtype = ch_drum;
}
chan_setupalg(channel6);
//hh
if (chip->rhy & 0x01) {
eg_keyon(channel7->slots[0], egk_drum);
}
else {
eg_keyoff(channel7->slots[0], egk_drum);
}
//tc
if (chip->rhy & 0x02) {
eg_keyon(channel8->slots[1], egk_drum);
}
else {
eg_keyoff(channel8->slots[1], egk_drum);
}
//tom
if (chip->rhy & 0x04) {
eg_keyon(channel8->slots[0], egk_drum);
}
else {
eg_keyoff(channel8->slots[0], egk_drum);
}
//sd
if (chip->rhy & 0x08) {
eg_keyon(channel7->slots[1], egk_drum);
}
else {
eg_keyoff(channel7->slots[1], egk_drum);
}
//bd
if (chip->rhy & 0x10) {
eg_keyon(channel6->slots[0], egk_drum);
eg_keyon(channel6->slots[1], egk_drum);
}
else {
eg_keyoff(channel6->slots[0], egk_drum);
eg_keyoff(channel6->slots[1], egk_drum);
}
}
else {
for (Bit8u chnum = 6; chnum < 9; chnum++) {
chip->channel[chnum].chtype = ch_2op;
chan_setupalg(&chip->channel[chnum]);
}
}
}
void chan_writea0(opl_channel *channel, Bit8u data) {
if (channel->chip->newm && channel->chtype == ch_4op2) {
return;
}
channel->f_num = (channel->f_num & 0x300) | data;
channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01);
envelope_update_ksl(channel->slots[0]);
envelope_update_ksl(channel->slots[1]);
envelope_update_rate(channel->slots[0]);
envelope_update_rate(channel->slots[1]);
if (channel->chip->newm && channel->chtype == ch_4op) {
channel->pair->f_num = channel->f_num;
channel->pair->ksv = channel->ksv;
envelope_update_ksl(channel->pair->slots[0]);
envelope_update_ksl(channel->pair->slots[1]);
envelope_update_rate(channel->pair->slots[0]);
envelope_update_rate(channel->pair->slots[1]);
}
}
void chan_writeb0(opl_channel *channel, Bit8u data) {
if (channel->chip->newm && channel->chtype == ch_4op2) {
return;
}
channel->f_num = (channel->f_num & 0xff) | ((data & 0x03) << 8);
channel->block = (data >> 2) & 0x07;
channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01);
envelope_update_ksl(channel->slots[0]);
envelope_update_ksl(channel->slots[1]);
envelope_update_rate(channel->slots[0]);
envelope_update_rate(channel->slots[1]);
if (channel->chip->newm && channel->chtype == ch_4op) {
channel->pair->f_num = channel->f_num;
channel->pair->block = channel->block;
channel->pair->ksv = channel->ksv;
envelope_update_ksl(channel->pair->slots[0]);
envelope_update_ksl(channel->pair->slots[1]);
envelope_update_rate(channel->pair->slots[0]);
envelope_update_rate(channel->pair->slots[1]);
}
}
void chan_setupalg(opl_channel *channel) {
if (channel->chtype == ch_drum) {
switch (channel->alg & 0x01) {
case 0x00:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->slots[0]->out;
break;
case 0x01:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->chip->zeromod;
break;
}
return;
}
if (channel->alg & 0x08) {
return;
}
if (channel->alg & 0x04) {
channel->pair->out[0] = &channel->chip->zeromod;
channel->pair->out[1] = &channel->chip->zeromod;
channel->pair->out[2] = &channel->chip->zeromod;
channel->pair->out[3] = &channel->chip->zeromod;
switch (channel->alg & 0x03) {
case 0x00:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->pair->slots[0]->out;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->slots[1]->out;
channel->out[1] = &channel->chip->zeromod;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x01:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->pair->slots[0]->out;
channel->slots[0]->mod = &channel->chip->zeromod;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->pair->slots[1]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x02:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->chip->zeromod;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->pair->slots[0]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x03:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->chip->zeromod;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->chip->zeromod;
channel->out[0] = &channel->pair->slots[0]->out;
channel->out[1] = &channel->slots[0]->out;
channel->out[2] = &channel->slots[1]->out;
channel->out[3] = &channel->chip->zeromod;
break;
}
}
else {
switch (channel->alg & 0x01) {
case 0x00:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->slots[1]->out;
channel->out[1] = &channel->chip->zeromod;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x01:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->chip->zeromod;
channel->out[0] = &channel->slots[0]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
}
}
}
void chan_writec0(opl_channel *channel, Bit8u data) {
channel->fb = (data & 0x0e) >> 1;
channel->con = data & 0x01;
channel->alg = channel->con;
if (channel->chip->newm) {
if (channel->chtype == ch_4op) {
channel->pair->alg = 0x04 | (channel->con << 1) | (channel->pair->con);
channel->alg = 0x08;
chan_setupalg(channel->pair);
}
else if (channel->chtype == ch_4op2) {
channel->alg = 0x04 | (channel->pair->con << 1) | (channel->con);
channel->pair->alg = 0x08;
chan_setupalg(channel);
}
else {
chan_setupalg(channel);
}
}
else {
chan_setupalg(channel);
}
if (channel->chip->newm) {
channel->cha = ((data >> 4) & 0x01) ? ~0 : 0;
channel->chb = ((data >> 5) & 0x01) ? ~0 : 0;
}
else {
channel->cha = channel->chb = 0xffff; // ~0;
}
}
void chan_generaterhythm1(opl_chip *chip) {
opl_channel *channel6 = &chip->channel[6];
opl_channel *channel7 = &chip->channel[7];
opl_channel *channel8 = &chip->channel[8];
slot_generate(channel6->slots[0]);
Bit16u phase14 = (channel7->slots[0]->pg_phase >> 9) & 0x3ff;
Bit16u phase17 = (channel8->slots[1]->pg_phase >> 9) & 0x3ff;
Bit16u phase = 0x00;
//hh tc phase bit
Bit16u phasebit = ((phase14 & 0x08) | (((phase14 >> 5) ^ phase14) & 0x04) | (((phase17 >> 2) ^ phase17) & 0x08)) ? 0x01 : 0x00;
//hh
phase = (phasebit << 9) | (0x34 << ((phasebit ^ (chip->noise & 0x01) << 1)));
slot_generatephase(channel7->slots[0], phase);
//tt
slot_generatezm(channel8->slots[0]);
}
void chan_generaterhythm2(opl_chip *chip) {
opl_channel *channel6 = &chip->channel[6];
opl_channel *channel7 = &chip->channel[7];
opl_channel *channel8 = &chip->channel[8];
slot_generate(channel6->slots[1]);
Bit16u phase14 = (channel7->slots[0]->pg_phase >> 9) & 0x3ff;
Bit16u phase17 = (channel8->slots[1]->pg_phase >> 9) & 0x3ff;
Bit16u phase = 0x00;
//hh tc phase bit
Bit16u phasebit = ((phase14 & 0x08) | (((phase14 >> 5) ^ phase14) & 0x04) | (((phase17 >> 2) ^ phase17) & 0x08)) ? 0x01 : 0x00;
//sd
phase = (0x100 << ((phase14 >> 8) & 0x01)) ^ ((chip->noise & 0x01) << 8);
slot_generatephase(channel7->slots[1], phase);
//tc
phase = 0x100 | (phasebit << 9);
slot_generatephase(channel8->slots[1], phase);
}
void chan_enable(opl_channel *channel) {
if (channel->chip->newm) {
if (channel->chtype == ch_4op) {
eg_keyon(channel->slots[0], egk_norm);
eg_keyon(channel->slots[1], egk_norm);
eg_keyon(channel->pair->slots[0], egk_norm);
eg_keyon(channel->pair->slots[1], egk_norm);
}
else if (channel->chtype == ch_2op || channel->chtype == ch_drum) {
eg_keyon(channel->slots[0], egk_norm);
eg_keyon(channel->slots[1], egk_norm);
}
}
else {
eg_keyon(channel->slots[0], egk_norm);
eg_keyon(channel->slots[1], egk_norm);
}
}
void chan_disable(opl_channel *channel) {
if (channel->chip->newm) {
if (channel->chtype == ch_4op) {
eg_keyoff(channel->slots[0], egk_norm);
eg_keyoff(channel->slots[1], egk_norm);
eg_keyoff(channel->pair->slots[0], egk_norm);
eg_keyoff(channel->pair->slots[1], egk_norm);
}
else if (channel->chtype == ch_2op || channel->chtype == ch_drum) {
eg_keyoff(channel->slots[0], egk_norm);
eg_keyoff(channel->slots[1], egk_norm);
}
}
else {
eg_keyoff(channel->slots[0], egk_norm);
eg_keyoff(channel->slots[1], egk_norm);
}
}
void chan_set4op(opl_chip *chip, Bit8u data) {
for (Bit8u bit = 0; bit < 6; bit++) {
Bit8u chnum = bit;
if (bit >= 3) {
chnum += 9 - 3;
}
if ((data >> bit) & 0x01) {
chip->channel[chnum].chtype = ch_4op;
chip->channel[chnum + 3].chtype = ch_4op2;
}
else {
chip->channel[chnum].chtype = ch_2op;
chip->channel[chnum + 3].chtype = ch_2op;
}
}
}
Bit16s limshort(Bit32s a) {
if (a > 32767) {
a = 32767;
}
else if (a < -32768) {
a = -32768;
}
return (Bit16s)a;
}
void chip_generate(opl_chip *chip, Bit16s *buff) {
buff[1] = limshort(chip->mixbuff[1]);
for (Bit8u ii = 0; ii < 12; ii++) {
slot_calcfb(&chip->slot[ii]);
pg_generate(&chip->slot[ii]);
envelope_calc(&chip->slot[ii]);
slot_generate(&chip->slot[ii]);
}
for (Bit8u ii = 12; ii < 15; ii++) {
slot_calcfb(&chip->slot[ii]);
pg_generate(&chip->slot[ii]);
envelope_calc(&chip->slot[ii]);
}
if (chip->rhy & 0x20) {
chan_generaterhythm1(chip);
}
else {
slot_generate(&chip->slot[12]);
slot_generate(&chip->slot[13]);
slot_generate(&chip->slot[14]);
}
chip->mixbuff[0] = 0;
for (Bit8u ii = 0; ii < 18; ii++) {
Bit16s accm = 0;
for (Bit8u jj = 0; jj < 4; jj++) {
accm += *chip->channel[ii].out[jj];
}
if (chip->FullPan) {
chip->mixbuff[0] += (Bit16s)(accm * chip->channel[ii].fcha);
}
else {
chip->mixbuff[0] += (Bit16s)(accm & chip->channel[ii].cha);
}
}
for (Bit8u ii = 15; ii < 18; ii++) {
slot_calcfb(&chip->slot[ii]);
pg_generate(&chip->slot[ii]);
envelope_calc(&chip->slot[ii]);
}
if (chip->rhy & 0x20) {
chan_generaterhythm2(chip);
}
else {
slot_generate(&chip->slot[15]);
slot_generate(&chip->slot[16]);
slot_generate(&chip->slot[17]);
}
buff[0] = limshort(chip->mixbuff[0]);
for (Bit8u ii = 18; ii < 33; ii++) {
slot_calcfb(&chip->slot[ii]);
pg_generate(&chip->slot[ii]);
envelope_calc(&chip->slot[ii]);
slot_generate(&chip->slot[ii]);
}
chip->mixbuff[1] = 0;
for (Bit8u ii = 0; ii < 18; ii++) {
Bit16s accm = 0;
for (Bit8u jj = 0; jj < 4; jj++) {
accm += *chip->channel[ii].out[jj];
}
if (chip->FullPan) {
chip->mixbuff[1] += (Bit16s)(accm * chip->channel[ii].fchb);
}
else {
chip->mixbuff[1] += (Bit16s)(accm & chip->channel[ii].chb);
}
}
for (Bit8u ii = 33; ii < 36; ii++) {
slot_calcfb(&chip->slot[ii]);
pg_generate(&chip->slot[ii]);
envelope_calc(&chip->slot[ii]);
slot_generate(&chip->slot[ii]);
}
n_generate(chip);
if ((chip->timer & 0x3f) == 0x3f) {
if (!chip->tremdir) {
if (chip->tremtval == 105) {
chip->tremtval--;
chip->tremdir = 1;
}
else {
chip->tremtval++;
}
}
else {
if (chip->tremtval == 0) {
chip->tremtval++;
chip->tremdir = 0;
}
else {
chip->tremtval--;
}
}
chip->tremval = (chip->tremtval >> 2) >> ((1 - chip->dam) << 1);
}
chip->timer++;
}
void NukedOPL3::Reset() {
memset(&opl3, 0, sizeof(opl_chip));
for (Bit8u slotnum = 0; slotnum < 36; slotnum++) {
opl3.slot[slotnum].chip = &opl3;
opl3.slot[slotnum].mod = &opl3.zeromod;
opl3.slot[slotnum].eg_rout = 0x1ff;
opl3.slot[slotnum].eg_out = 0x1ff;
opl3.slot[slotnum].eg_gen = envelope_gen_num_off;
opl3.slot[slotnum].trem = (Bit8u*)&opl3.zeromod;
}
for (Bit8u channum = 0; channum < 18; channum++) {
opl3.channel[channum].slots[0] = &opl3.slot[ch_slot[channum]];
opl3.channel[channum].slots[1] = &opl3.slot[ch_slot[channum] + 3];
opl3.slot[ch_slot[channum]].channel = &opl3.channel[channum];
opl3.slot[ch_slot[channum] + 3].channel = &opl3.channel[channum];
if ((channum % 9) < 3) {
opl3.channel[channum].pair = &opl3.channel[channum + 3];
}
else if ((channum % 9) < 6) {
opl3.channel[channum].pair = &opl3.channel[channum - 3];
}
opl3.channel[channum].chip = &opl3;
opl3.channel[channum].out[0] = &opl3.zeromod;
opl3.channel[channum].out[1] = &opl3.zeromod;
opl3.channel[channum].out[2] = &opl3.zeromod;
opl3.channel[channum].out[3] = &opl3.zeromod;
opl3.channel[channum].chtype = ch_2op;
opl3.channel[channum].cha = 0xffff; // ~0;
opl3.channel[channum].chb = 0xffff; // ~0;
opl3.channel[channum].fcha = 1.0;
opl3.channel[channum].fchb = 1.0;
chan_setupalg(&opl3.channel[channum]);
}
opl3.noise = 0x306600;
opl3.timer = 0;
opl3.FullPan = FullPan;
}
void NukedOPL3::WriteReg(Bit32u reg, Bit8u v) {
v &= 0xff;
reg &= 0x1ff;
Bit8u high = (reg >> 8) & 0x01;
Bit8u regm = reg & 0xff;
switch (regm & 0xf0) {
case 0x00:
if (high) {
switch (regm & 0x0f) {
case 0x04:
chan_set4op(&opl3, v);
break;
case 0x05:
opl3.newm = v & 0x01;
break;
}
}
else {
switch (regm & 0x0f) {
case 0x08:
opl3.nts = (v >> 6) & 0x01;
break;
}
}
break;
case 0x20:
case 0x30:
if (ad_slot[regm & 0x1f] >= 0) {
slot_write20(&opl3.slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x40:
case 0x50:
if (ad_slot[regm & 0x1f] >= 0) {
slot_write40(&opl3.slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x60:
case 0x70:
if (ad_slot[regm & 0x1f] >= 0) {
slot_write60(&opl3.slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x80:
case 0x90:
if (ad_slot[regm & 0x1f] >= 0) {
slot_write80(&opl3.slot[18 * high + ad_slot[regm & 0x1f]], v);;
}
break;
case 0xe0:
case 0xf0:
if (ad_slot[regm & 0x1f] >= 0) {
slot_writee0(&opl3.slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0xa0:
if ((regm & 0x0f) < 9) {
chan_writea0(&opl3.channel[9 * high + (regm & 0x0f)], v);
}
break;
case 0xb0:
if (regm == 0xbd && !high) {
opl3.dam = v >> 7;
opl3.dvb = (v >> 6) & 0x01;
chan_updaterhythm(&opl3, v);
}
else if ((regm & 0x0f) < 9) {
chan_writeb0(&opl3.channel[9 * high + (regm & 0x0f)], v);
if (v & 0x20) {
chan_enable(&opl3.channel[9 * high + (regm & 0x0f)]);
}
else {
chan_disable(&opl3.channel[9 * high + (regm & 0x0f)]);
}
}
break;
case 0xc0:
if ((regm & 0x0f) < 9) {
chan_writec0(&opl3.channel[9 * high + (regm & 0x0f)], v);
}
break;
}
}
void NukedOPL3::Update(float* sndptr, int numsamples) {
Bit16s buffer[2];
for (Bit32u i = 0; i < (Bit32u)numsamples; i++) {
chip_generate(&opl3, buffer);
*sndptr++ += (float)(buffer[0] / 10240.0);
*sndptr++ += (float)(buffer[1] / 10240.0);
}
}
void NukedOPL3::SetPanning(int c, float left, float right) {
if (FullPan) {
opl3.channel[c].fcha = left;
opl3.channel[c].fchb = right;
}
}
NukedOPL3::NukedOPL3(bool stereo) {
FullPan = stereo;
Reset();
}