// Easing functions based on AHEasing // Converted to template functions for Gin // // Copyright (c) 2011, Auerhaus Development, LLC // // This program is free software. It comes without any warranty, to // the extent permitted by applicable law. You can redistribute it // and/or modify it under the terms of the Do What The Fuck You Want // To Public License, Version 2, as published by Sam Hocevar. See // http://sam.zoy.org/wtfpl/COPYING for more details. // Modeled after the line y = x template T easeLinear (T p) { return p; } // Modeled after the parabola y = x^2 template T easeQuadraticIn (T p) { return p * p; } // Modeled after the parabola y = -x^2 + 2x template T easeQuadraticOut (T p) { return -(p * (p - 2)); } // Modeled after the piecewise quadratic // y = (1/2)((2x)^2) ; [0, 0.5) // y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1] template T easeQuadraticInOut (T p) { if (p < 0.5) return 2 * p * p; else return (-2 * p * p) + (4 * p) - 1; } // Modeled after the cubic y = x^3 template T easeCubicIn (T p) { return p * p * p; } // Modeled after the cubic y = (x - 1)^3 + 1 template T easeCubicOut (T p) { T f = (p - 1); return f * f * f + 1; } // Modeled after the piecewise cubic // y = (1/2)((2x)^3) ; [0, 0.5) // y = (1/2)((2x-2)^3 + 2) ; [0.5, 1] template T easeCubicInOut (T p) { if (p < 0.5) return 4 * p * p * p; T f = ((2 * p) - 2); return 0.5 * f * f * f + 1; } // Modeled after the quartic x^4 template T easeQuarticIn (T p) { return p * p * p * p; } // Modeled after the quartic y = 1 - (x - 1)^4 template T easeQuarticOut (T p) { T f = (p - 1); return f * f * f * (1 - p) + 1; } // Modeled after the piecewise quartic // y = (1/2)((2x)^4) ; [0, 0.5) // y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1] template T easeQuarticInOut (T p) { if (p < 0.5) return 8 * p * p * p * p; T f = (p - 1); return -8 * f * f * f * f + 1; } // Modeled after the quintic y = x^5 template T easeQuinticIn (T p) { return p * p * p * p * p; } // Modeled after the quintic y = (x - 1)^5 + 1 template T easeQuinticOut (T p) { T f = (p - 1); return f * f * f * f * f + 1; } // Modeled after the piecewise quintic // y = (1/2)((2x)^5) ; [0, 0.5) // y = (1/2)((2x-2)^5 + 2) ; [0.5, 1] template T easeQuinticInOut (T p) { if (p < 0.5) return 16 * p * p * p * p * p; T f = ((2 * p) - 2); return 0.5 * f * f * f * f * f + 1; } // Modeled after quarter-cycle of sine wave template T easeSineIn (T p) { return std::sin ((p - 1) * (MathConstants::pi / 2)) + 1; } // Modeled after quarter-cycle of sine wave (different phase) template T easeSineOut (T p) { return std::sin (p * MathConstants::pi / 2); } // Modeled after half sine wave template T easeSineInOut (T p) { return T (0.5) * (1 - std::cos (p * MathConstants::pi)); } // Modeled after shifted quadrant IV of unit circle template T easeCircularIn (T p) { return 1 - std::sqrt (1 - (p * p)); } // Modeled after shifted quadrant II of unit circle template T easeCircularOut (T p) { return std::sqrt ((2 - p) * p); } // Modeled after the piecewise circular function // y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5) // y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1] template T easeCircularInOut (T p) { if (p < 0.5) return 0.5 * (1 - std::sqrt (1 - 4 * (p * p))); else return 0.5 * (std::sqrt (-((2 * p) - 3) * ((2 * p) - 1)) + 1); } // Modeled after the exponential function y = 2^(10(x - 1)) template T easeExponentialIn (T p) { return (p == 0.0) ? p : std::pow (2, 10 * (p - 1)); } // Modeled after the exponential function y = -2^(-10x) + 1 template T easeExponentialOut (T p) { return (p == 1.0) ? p : 1 - std::pow (2, -10 * p); } // Modeled after the piecewise exponential // y = (1/2)2^(10(2x - 1)) ; [0,0.5) // y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1] template T easeExponentialInOut (T p) { if (p == 0.0 || p == 1.0) return p; if (p < 0.5) return 0.5 * std::pow (2, (20 * p) - 10); else return -0.5 * std::pow (2, (-20 * p) + 10) + 1; } // Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1)) template T easeElasticIn (T p) { return std::sin (13 * (MathConstants::pi / 2) * p) * std::pow (2, 10 * (p - 1)); } // Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1 template T easeElasticOut (T p) { return std::sin (-13 * (MathConstants::pi / 2) * (p + 1)) * std::pow (2, -10 * p) + 1; } // Modeled after the piecewise exponentially-damped sine wave: // y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5) // y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1] template T easeElasticInOut (T p) { if (p < 0.5) return 0.5 * std::sin (13 * (MathConstants::pi / 2) * (2 * p)) * std::pow (2, 10 * ((2 * p) - 1)); else return 0.5 * (std::sin (-13 * (MathConstants::pi / 2) * ((2 * p - 1) + 1)) * std::pow (2, -10 * (2 * p - 1)) + 2); } // Modeled after the overshooting cubic y = x^3-x*sin(x*pi) template T easeBackIn (T p) { return p * p * p - p * std::sin (p * MathConstants::pi); } // Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi)) template T easeBackOut (T p) { T f = (1 - p); return 1 - (f * f * f - f * std::sin (f * MathConstants::pi)); } // Modeled after the piecewise overshooting cubic function: // y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5) // y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1] template T easeBackInOut (T p) { if (p < 0.5) { T f = 2 * p; return 0.5 * (f * f * f - f * std::sin (f * MathConstants::pi)); } else { T f = (1 - (2*p - 1)); return 0.5 * (1 - (f * f * f - f * std::sin (f * MathConstants::pi))) + 0.5; } } template T easeBounceIn (T p) { return 1 - easeBounceOut (1 - p); } template T easeBounceOut (T p) { if (p < 4/11.0) return (121 * p * p) / 16.0; else if (p < 8/11.0) return (363/40.0 * p * p) - (99/10.0 * p) + 17/5.0; else if (p < 9/10.0) return (4356/361.0 * p * p) - (35442/1805.0 * p) + 16061/1805.0; else return (54/5.0 * p * p) - (513/25.0 * p) + 268/25.0; } template T easeBounceInOut (T p) { if (p < 0.5) return 0.5 * easeBounceEaseIn (p * 2); else return 0.5 * easeBounceEaseOut (p * 2 - 1) + 0.5; }