/* __________ _____ __ __\______ \_____ _______ ______ ____ _______ / \ | | \| ___/\__ \ \_ __ \/ ___/_/ __ \\_ __ \ | Y Y \| | /| | / __ \_| | \/\___ \ \ ___/ | | \/ |__|_| /|____/ |____| (____ /|__| /____ > \___ >|__| \/ \/ \/ \/ Copyright (C) 2013 Ingo Berg Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "muParser.h" #include "muParserTemplateMagic.h" //--- Standard includes ------------------------------------------------------------------------ #include #include #include /** \brief Pi (what else?). */ #define PARSER_CONST_PI 3.141592653589793238462643 /** \brief The Eulerian number. */ #define PARSER_CONST_E 2.718281828459045235360287 using namespace std; /** \file \brief Implementation of the standard floating point parser. */ /** \brief Namespace for mathematical applications. */ namespace mu { //--------------------------------------------------------------------------- // Trigonometric function value_type Parser::Sin(SParam, value_type v) { return MathImpl::Sin(v); } value_type Parser::Cos(SParam, value_type v) { return MathImpl::Cos(v); } value_type Parser::Tan(SParam, value_type v) { return MathImpl::Tan(v); } value_type Parser::ASin(SParam, value_type v) { return MathImpl::ASin(v); } value_type Parser::ACos(SParam, value_type v) { return MathImpl::ACos(v); } value_type Parser::ATan(SParam, value_type v) { return MathImpl::ATan(v); } value_type Parser::ATan2(SParam, value_type v1, value_type v2) { return MathImpl::ATan2(v1, v2); } value_type Parser::Sinh(SParam, value_type v) { return MathImpl::Sinh(v); } value_type Parser::Cosh(SParam, value_type v) { return MathImpl::Cosh(v); } value_type Parser::Tanh(SParam, value_type v) { return MathImpl::Tanh(v); } value_type Parser::ASinh(SParam, value_type v) { return MathImpl::ASinh(v); } value_type Parser::ACosh(SParam, value_type v) { return MathImpl::ACosh(v); } value_type Parser::ATanh(SParam, value_type v) { return MathImpl::ATanh(v); } //--------------------------------------------------------------------------- // Logarithm functions // Logarithm base 2 value_type Parser::Log2(SParam, value_type v) { #ifdef MUP_MATH_EXCEPTIONS if (v<=0) throw ParserError(ecDOMAIN_ERROR, _T("Log2")); #endif return MathImpl::Log2(v); } // Logarithm base 10 value_type Parser::Log10(SParam, value_type v) { #ifdef MUP_MATH_EXCEPTIONS if (v<=0) throw ParserError(ecDOMAIN_ERROR, _T("Log10")); #endif return MathImpl::Log10(v); } // Logarithm base e (natural logarithm) value_type Parser::Ln(SParam, value_type v) { #ifdef MUP_MATH_EXCEPTIONS if (v<=0) throw ParserError(ecDOMAIN_ERROR, _T("Ln")); #endif return MathImpl::Log(v); } //--------------------------------------------------------------------------- // misc value_type Parser::Exp(SParam, value_type v) { return MathImpl::Exp(v); } value_type Parser::Abs(SParam, value_type v) { return MathImpl::Abs(v); } value_type Parser::Sqrt(SParam, value_type v) { #ifdef MUP_MATH_EXCEPTIONS if (v<0) throw ParserError(ecDOMAIN_ERROR, _T("sqrt")); #endif return MathImpl::Sqrt(v); } value_type Parser::Rint(SParam, value_type v) { return MathImpl::Rint(v); } value_type Parser::Sign(SParam, value_type v) { return MathImpl::Sign(v); } //--------------------------------------------------------------------------- /** \brief Callback for the unary minus operator. \param v The value to negate \return -v */ value_type Parser::UnaryMinus(SParam, value_type v) { return -v; } //--------------------------------------------------------------------------- /** \brief Callback for the unary minus operator. \param v The value to negate \return -v */ value_type Parser::UnaryPlus(SParam, value_type v) { return v; } //--------------------------------------------------------------------------- /** \brief Callback for adding multiple values. \param [in] a_afArg Vector with the function arguments \param [in] a_iArgc The size of a_afArg */ value_type Parser::Sum(SParam, const value_type *a_afArg, int a_iArgc) { if (!a_iArgc) throw exception_type(_T("too few arguments for function sum.")); value_type fRes=0; for (int i=0; i> fVal; stringstream_type::pos_type iEnd = stream.tellg(); // Position after reading if (iEnd==(stringstream_type::pos_type)-1) return 0; *a_iPos += (int)iEnd; *a_fVal = fVal; return 1; } //--------------------------------------------------------------------------- /** \brief Constructor. Call ParserBase class constructor and trigger Function, Operator and Constant initialization. */ Parser::Parser() :ParserBase() { AddValIdent(IsVal); InitCharSets(); InitFun(); InitConst(); InitOprt(); } //--------------------------------------------------------------------------- /** \brief Define the character sets. \sa DefineNameChars, DefineOprtChars, DefineInfixOprtChars This function is used for initializing the default character sets that define the characters to be useable in function and variable names and operators. */ void Parser::InitCharSets() { DefineNameChars( _T("0123456789_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ") ); DefineOprtChars( _T("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ+-*^/?<>=#!$%&|~'_{}") ); DefineInfixOprtChars( _T("/+-*^?<>=#!$%&|~'_") ); } //--------------------------------------------------------------------------- /** \brief Initialize the default functions. */ void Parser::InitFun() { if (mu::TypeInfo::IsInteger()) { // When setting MUP_BASETYPE to an integer type // Place functions for dealing with integer values here // ... // ... // ... } else { // trigonometric functions DefineFun(_T("sin"), Sin); DefineFun(_T("cos"), Cos); DefineFun(_T("tan"), Tan); // arcus functions DefineFun(_T("asin"), ASin); DefineFun(_T("acos"), ACos); DefineFun(_T("atan"), ATan); DefineFun(_T("atan2"), ATan2); // hyperbolic functions DefineFun(_T("sinh"), Sinh); DefineFun(_T("cosh"), Cosh); DefineFun(_T("tanh"), Tanh); // arcus hyperbolic functions DefineFun(_T("asinh"), ASinh); DefineFun(_T("acosh"), ACosh); DefineFun(_T("atanh"), ATanh); // Logarithm functions DefineFun(_T("log2"), Log2); DefineFun(_T("log10"), Log10); DefineFun(_T("log"), Ln); DefineFun(_T("ln"), Ln); // misc DefineFun(_T("exp"), Exp); DefineFun(_T("sqrt"), Sqrt); DefineFun(_T("sign"), Sign); DefineFun(_T("rint"), Rint); DefineFun(_T("abs"), Abs); // Functions with variable number of arguments DefineFun(_T("sum"), Sum); DefineFun(_T("avg"), Avg); DefineFun(_T("min"), Min); DefineFun(_T("max"), Max); } } //--------------------------------------------------------------------------- /** \brief Initialize constants. By default the parser recognizes two constants. Pi ("pi") and the Eulerian number ("_e"). */ void Parser::InitConst() { DefineConst(_T("_pi"), (value_type)PARSER_CONST_PI); DefineConst(_T("_e"), (value_type)PARSER_CONST_E); } //--------------------------------------------------------------------------- /** \brief Initialize operators. By default only the unary minus operator is added. */ void Parser::InitOprt() { DefineInfixOprt(_T("-"), UnaryMinus); DefineInfixOprt(_T("+"), UnaryPlus); } //--------------------------------------------------------------------------- void Parser::OnDetectVar(string_type * /*pExpr*/, int & /*nStart*/, int & /*nEnd*/) { // this is just sample code to illustrate modifying variable names on the fly. // I'm not sure anyone really needs such a feature... /* string sVar(pExpr->begin()+nStart, pExpr->begin()+nEnd); string sRepl = std::string("_") + sVar + "_"; int nOrigVarEnd = nEnd; cout << "variable detected!\n"; cout << " Expr: " << *pExpr << "\n"; cout << " Start: " << nStart << "\n"; cout << " End: " << nEnd << "\n"; cout << " Var: \"" << sVar << "\"\n"; cout << " Repl: \"" << sRepl << "\"\n"; nEnd = nStart + sRepl.length(); cout << " End: " << nEnd << "\n"; pExpr->replace(pExpr->begin()+nStart, pExpr->begin()+nOrigVarEnd, sRepl); cout << " New expr: " << *pExpr << "\n"; */ } //--------------------------------------------------------------------------- /** \brief Numerically differentiate with regard to a variable. \param [in] a_Var Pointer to the differentiation variable. \param [in] a_fPos Position at which the differentiation should take place. \param [in] a_fEpsilon Epsilon used for the numerical differentiation. Numerical differentiation uses a 5 point operator yielding a 4th order formula. The default value for epsilon is 0.00074 which is numeric_limits::epsilon() ^ (1/5) as suggested in the muparser forum: http://sourceforge.net/forum/forum.php?thread_id=1994611&forum_id=462843 */ value_type Parser::Diff(value_type *a_Var, value_type a_fPos, value_type a_fEpsilon) const { value_type fRes(0), fBuf(*a_Var), f[4] = {0,0,0,0}, fEpsilon(a_fEpsilon); // Backwards compatible calculation of epsilon inc case the user doesn't provide // his own epsilon if (fEpsilon==0) fEpsilon = (a_fPos==0) ? (value_type)1e-10 : (value_type)1e-7 * a_fPos; *a_Var = a_fPos+2 * fEpsilon; f[0] = Eval(); *a_Var = a_fPos+1 * fEpsilon; f[1] = Eval(); *a_Var = a_fPos-1 * fEpsilon; f[2] = Eval(); *a_Var = a_fPos-2 * fEpsilon; f[3] = Eval(); *a_Var = fBuf; // restore variable fRes = (-f[0] + 8*f[1] - 8*f[2] + f[3]) / (12*fEpsilon); return fRes; } } // namespace mu