71 lines
1.4 KiB
C
71 lines
1.4 KiB
C
|
/*==============================================================================
|
||
|
|
||
|
Copyright 2020 by Roland Rabien
|
||
|
For more information visit www.rabiensoftware.com
|
||
|
|
||
|
==============================================================================*/
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
/** Lagrange interpolation is a simple way to obtain a smooth curve from a set of
|
||
|
discrete points.
|
||
|
*/
|
||
|
|
||
|
namespace Lagrange
|
||
|
{
|
||
|
|
||
|
template <class T>
|
||
|
T interpolate (const Array<juce::Point<T>>& points, T x)
|
||
|
{
|
||
|
T res = 0;
|
||
|
|
||
|
const int num = points.size();
|
||
|
for (int i = 0; i < num; i++)
|
||
|
{
|
||
|
T term = points[i].y;
|
||
|
for (int j = 0; j < num; j++)
|
||
|
{
|
||
|
if (i != j)
|
||
|
{
|
||
|
auto d = points[i].x - points[j].x;
|
||
|
if (d != 0)
|
||
|
term = term * (x - points[j].x ) / (d);
|
||
|
else
|
||
|
term = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
res += term;
|
||
|
}
|
||
|
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
T interpolate (T xArr[], T yArr[], int num, T x)
|
||
|
{
|
||
|
T res = 0;
|
||
|
|
||
|
for (int i = 0; i < num; i++)
|
||
|
{
|
||
|
T term = yArr[i];
|
||
|
for (int j = 0; j < num; j++)
|
||
|
{
|
||
|
if (i != j)
|
||
|
{
|
||
|
auto d = xArr[i] - xArr[j];
|
||
|
if (d != 0)
|
||
|
term = term * (x - xArr[j] ) / d;
|
||
|
else
|
||
|
term = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
res += term;
|
||
|
}
|
||
|
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
}
|