2
0
Fork 0
OB-Xd/Modules/gin/3rdparty/avir/avir.h

6199 lines
186 KiB
C
Raw Normal View History

2020-05-21 07:14:57 +00:00
//$ nobt
//$ nocpp
/**
* @file avir.h
*
* @brief The "main" inclusion file with all required classes and functions.
*
* This is the "main" inclusion file for the "AVIR" image resizer. This
* inclusion file contains implementation of the AVIR image resizing algorithm
* in its entirety. Also includes several classes and functions that can be
* useful elsewhere.
*
* AVIR Copyright (c) 2015-2019 Aleksey Vaneev
*
* @mainpage
*
* @section intro_sec Introduction
*
* Description is available at https://github.com/avaneev/avir
*
* AVIR is devoted to women. Your digital photos can look good at any size!
*
* @section license License
*
* AVIR License Agreement
*
* The MIT License (MIT)
*
* Copyright (c) 2015-2019 Aleksey Vaneev
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Please credit the author of this library in your documentation in the
* following way: "AVIR image resizing algorithm designed by Aleksey Vaneev"
*
* @version 2.4
*/
#ifndef AVIR_CIMAGERESIZER_INCLUDED
#define AVIR_CIMAGERESIZER_INCLUDED
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
namespace avir {
/**
* The macro defines AVIR version string.
*/
#define AVIR_VERSION "2.4"
/**
* The macro equals to "pi" constant, fills 53-bit floating point mantissa.
* Undefined at the end of file.
*/
#define AVIR_PI 3.1415926535897932
/**
* The macro equals to "pi divided by 2" constant, fills 53-bit floating
* point mantissa. Undefined at the end of file.
*/
#define AVIR_PId2 1.5707963267948966
/**
* Rounding function, based on the (int) typecast. Biased result. Not suitable
* for numbers >= 2^31.
*
* @param d Value to round.
* @return Rounded value. Some bias may be introduced.
*/
template< class T >
inline T round( const T d )
{
return( d < 0.0 ? -(T) (int) ( (T) 0.5 - d ) : (T) (int) ( d + (T) 0.5 ));
}
/**
* Template function "clamps" (clips) the specified value so that it is not
* lesser than "minv", and not greater than "maxv".
*
* @param Value Value to clamp.
* @param minv Minimal allowed value.
* @param maxv Maximal allowed value.
* @return The clamped value.
*/
template< class T >
inline T clamp( const T& Value, const T minv, const T maxv )
{
if( Value < minv )
{
return( minv );
}
else
if( Value > maxv )
{
return( maxv );
}
else
{
return( Value );
}
}
/**
* Power 2.4 approximation function, designed for sRGB gamma correction.
*
* @param x Argument, in the range 0.09 to 1.
* @return Value raised into power 2.4, approximate.
*/
template< class T >
inline T pow24_sRGB( const T x )
{
const double x2 = x * x;
const double x3 = x2 * x;
const double x4 = x2 * x2;
return( (T) ( 0.0985766365536824 + 0.839474952656502 * x2 +
0.363287814061725 * x3 - 0.0125559718896615 /
( 0.12758338921578 + 0.290283465468235 * x ) -
0.231757513261358 * x - 0.0395365717969074 * x4 ));
}
/**
* Power 1/2.4 approximation function, designed for sRGB gamma correction.
*
* @param x Argument, in the range 0.003 to 1.
* @return Value raised into power 1/2.4, approximate.
*/
template< class T >
inline T pow24i_sRGB( const T x )
{
const double sx = sqrt( x );
const double ssx = sqrt( sx );
const double sssx = sqrt( ssx );
return( (T) ( 0.000213364515060263 + 0.0149409239419218 * x +
0.433973412731747 * sx + ssx * ( 0.659628181609715 * sssx -
0.0380957908841466 - 0.0706476137208521 * sx )));
}
/**
* Function approximately linearizes the sRGB gamma value.
*
* @param s sRGB gamma value, in the range 0 to 1.
* @return Linearized sRGB gamma value, approximated.
*/
template< class T >
inline T convertSRGB2Lin( const T s )
{
const T a = (T) 0.055;
if( s <= (T) 0.04045 )
{
return( s / (T) 12.92 );
}
return( pow24_sRGB(( s + a ) / ( (T) 1 + a )));
}
/**
* Function approximately de-linearizes the linear gamma value.
*
* @param s Linear gamma value, in the range 0 to 1.
* @return sRGB gamma value, approximated.
*/
template< class T >
inline T convertLin2SRGB( const T s )
{
const T a = (T) 0.055;
if( s <= (T) 0.0031308 )
{
return( (T) 12.92 * s );
}
return(( (T) 1 + a ) * pow24i_sRGB( s ) - a );
}
/**
* Function converts (via typecast) specified array of type T1 values of
* length l into array of type T2 values. If T1 is the same as T2, copy
* operation is performed. When copying data at overlapping address spaces,
* "op" should be lower than "ip".
*
* @param ip Input buffer.
* @param[out] op Output buffer.
* @param l The number of elements to copy.
* @param ip Input buffer pointer increment.
* @param op Output buffer pointer increment.
*/
template< class T1, class T2 >
inline void copyArray( const T1* ip, T2* op, int l,
const int ipinc = 1, const int opinc = 1 )
{
while( l > 0 )
{
*op = (T2) *ip;
op += opinc;
ip += ipinc;
l--;
}
}
/**
* Function adds values located in array "ip" to array "op".
*
* @param ip Input buffer.
* @param[out] op Output buffer.
* @param l The number of elements to add.
* @param ip Input buffer pointer increment.
* @param op Output buffer pointer increment.
*/
template< class T1, class T2 >
inline void addArray( const T1* ip, T2* op, int l,
const int ipinc = 1, const int opinc = 1 )
{
while( l > 0 )
{
*op += *ip;
op += opinc;
ip += ipinc;
l--;
}
}
/**
* Function that replicates a set of adjacent elements several times in a row.
* This operation is usually used to replicate pixels at the start or end of
* image's scanline.
*
* @param ip Source array.
* @param ipl Source array length (usually 1..4, but can be any number).
* @param[out] op Destination buffer.
* @param l Number of times the source array should be replicated (the
* destination buffer should be able to hold ipl * l number of elements).
* @param opinc Destination buffer position increment after replicating the
* source array. This value should be equal to at least ipl.
*/
template< class T1, class T2 >
inline void replicateArray( const T1* const ip, const int ipl, T2* op, int l,
const int opinc )
{
if( ipl == 1 )
{
while( l > 0 )
{
op[ 0 ] = ip[ 0 ];
op += opinc;
l--;
}
}
else
if( ipl == 4 )
{
while( l > 0 )
{
op[ 0 ] = ip[ 0 ];
op[ 1 ] = ip[ 1 ];
op[ 2 ] = ip[ 2 ];
op[ 3 ] = ip[ 3 ];
op += opinc;
l--;
}
}
else
if( ipl == 3 )
{
while( l > 0 )
{
op[ 0 ] = ip[ 0 ];
op[ 1 ] = ip[ 1 ];
op[ 2 ] = ip[ 2 ];
op += opinc;
l--;
}
}
else
if( ipl == 2 )
{
while( l > 0 )
{
op[ 0 ] = ip[ 0 ];
op[ 1 ] = ip[ 1 ];
op += opinc;
l--;
}
}
else
{
while( l > 0 )
{
int i;
for( i = 0; i < ipl; i++ )
{
op[ i ] = ip[ i ];
}
op += opinc;
l--;
}
}
}
/**
* Function calculates frequency response of the specified FIR filter at the
* specified circular frequency. Phase can be calculated as atan2( im, re ).
* Function uses computationally-efficient oscillators instead of "cos" and
* "sin" functions.
*
* @param flt FIR filter's coefficients.
* @param fltlen Number of coefficients (taps) in the filter.
* @param th Circular frequency [0; pi].
* @param[out] re0 Resulting real part of the complex frequency response.
* @param[out] im0 Resulting imaginary part of the complex frequency response.
* @param fltlat Filter's latency in samples (taps).
*/
template< class T >
inline void calcFIRFilterResponse( const T* flt, int fltlen,
const double th, double& re0, double& im0, const int fltlat = 0 )
{
const double sincr = 2.0 * cos( th );
double cvalue1;
double svalue1;
if( fltlat == 0 )
{
cvalue1 = 1.0;
svalue1 = 0.0;
}
else
{
cvalue1 = cos( -fltlat * th );
svalue1 = sin( -fltlat * th );
}
double cvalue2 = cos( -( fltlat + 1 ) * th );
double svalue2 = sin( -( fltlat + 1 ) * th );
double re = 0.0;
double im = 0.0;
while( fltlen > 0 )
{
re += cvalue1 * flt[ 0 ];
im += svalue1 * flt[ 0 ];
flt++;
fltlen--;
double tmp = cvalue1;
cvalue1 = sincr * cvalue1 - cvalue2;
cvalue2 = tmp;
tmp = svalue1;
svalue1 = sincr * svalue1 - svalue2;
svalue2 = tmp;
}
re0 = re;
im0 = im;
}
/**
* Function normalizes FIR filter so that its frequency response at DC is
* equal to DCGain.
*
* @param[in,out] p Filter coefficients.
* @param l Filter length.
* @param DCGain Filter's gain at DC.
* @param pstep "p" array step.
*/
template< class T >
inline void normalizeFIRFilter( T* const p, const int l, const double DCGain,
const int pstep = 1 )
{
double s = 0.0;
T* pp = p;
int i = l;
while( i > 0 )
{
s += *pp;
pp += pstep;
i--;
}
s = DCGain / s;
pp = p;
i = l;
while( i > 0 )
{
*pp = (T) ( *pp * s );
pp += pstep;
i--;
}
}
/**
* @brief Memory buffer class for element array storage, with capacity
* tracking.
*
* Allows easier handling of memory blocks allocation and automatic
* deallocation for arrays (buffers) consisting of elements of specified
* class. Tracks buffer's capacity in "int" variable; unsuitable for
* allocation of very large memory blocks (with more than 2 billion elements).
*
* This class manages memory space only - it does not perform element class
* construction (initialization) operations. Buffer's required memory address
* alignment specification is supported.
*
* Uses standard library to allocate and deallocate memory.
*
* @tparam T Buffer element's type.
* @tparam capint Buffer capacity's type to use. Use size_t for large buffers.
*/
template< class T, typename capint = int >
class CBuffer
{
public:
CBuffer()
: Data( nullptr )
, DataAligned( nullptr )
, Capacity( 0 )
, Alignment( 0 )
{
}
/**
* Constructor creates the buffer with the specified capacity.
*
* @param aCapacity Buffer's capacity.
* @param aAlignment Buffer's required memory address alignment. 0 - use
* stdlib's default alignment.
*/
CBuffer( const capint aCapacity, const int aAlignment = 0 )
{
allocinit( aCapacity, aAlignment );
}
CBuffer( const CBuffer& Source )
{
allocinit( Source.Capacity, Source.Alignment );
memcpy( DataAligned, Source.DataAligned, Capacity * sizeof( T ));
}
~CBuffer()
{
freeData();
}
CBuffer& operator = ( const CBuffer& Source )
{
alloc( Source.Capacity, Source.Alignment );
memcpy( DataAligned, Source.DataAligned, Capacity * sizeof( T ));
return( *this );
}
/**
* Function allocates memory so that the specified number of elements
* can be stored in *this buffer object.
*
* @param aCapacity Storage for this number of elements to allocate.
* @param aAlignment Buffer's required memory address alignment,
* power-of-2 values only. 0 - use stdlib's default alignment.
*/
void alloc( const capint aCapacity, const int aAlignment = 0 )
{
freeData();
allocinit( aCapacity, aAlignment );
}
/**
* Function deallocates any previously allocated buffer.
*/
void free()
{
freeData();
Data = nullptr;
DataAligned = nullptr;
Capacity = 0;
Alignment = 0;
}
/**
* @return The capacity of the element buffer.
*/
capint getCapacity() const
{
return( Capacity );
}
/**
* Function "forces" *this buffer to have an arbitary capacity. Calling
* this function invalidates all further operations except deleting *this
* object. This function should not be usually used at all. Function can
* be used to "model" certain buffer capacity without calling a costly
* memory allocation function.
*
* @param NewCapacity A new "forced" capacity.
*/
void forceCapacity( const capint NewCapacity )
{
Capacity = NewCapacity;
}
/**
* Function reallocates *this buffer to a larger size so that it will be
* able to hold the specified number of elements. Downsizing is not
* performed. Alignment is not changed.
*
* @param NewCapacity New (increased) capacity.
* @param DoDataCopy "True" if data in the buffer should be retained.
*/
void increaseCapacity( const capint NewCapacity,
const bool DoDataCopy = true )
{
if( NewCapacity < Capacity )
{
return;
}
if( DoDataCopy )
{
const capint PrevCapacity = Capacity;
T* const PrevData = Data;
T* const PrevDataAligned = DataAligned;
allocinit( NewCapacity, Alignment );
memcpy( DataAligned, PrevDataAligned, PrevCapacity * sizeof( T ));
:: free( PrevData );
}
else
{
:: free( Data );
allocinit( NewCapacity, Alignment );
}
}
/**
* Function "truncates" (reduces) capacity of the buffer without
* reallocating it. Alignment is not changed.
*
* @param NewCapacity New required capacity.
*/
void truncateCapacity( const capint NewCapacity )
{
if( NewCapacity >= Capacity )
{
return;
}
Capacity = NewCapacity;
}
/**
* Function increases capacity so that the specified number of
* elements can be stored. This function increases the previous capacity
* value by third the current capacity value until space for the required
* number of elements is available. Alignment is not changed.
*
* @param ReqCapacity Required capacity.
*/
void updateCapacity( const capint ReqCapacity )
{
if( ReqCapacity <= Capacity )
{
return;
}
capint NewCapacity = Capacity;
while( NewCapacity < ReqCapacity )
{
NewCapacity += NewCapacity / 3 + 1;
}
increaseCapacity( NewCapacity );
}
operator T* () const
{
return( DataAligned );
}
private:
T* Data; ///< Element buffer pointer.
///<
T* DataAligned; ///< Memory address-aligned element buffer pointer.
///<
capint Capacity; ///< Element buffer capacity.
///<
int Alignment; ///< Memory address alignment in use. 0 - use stdlib's
///< default alignment.
///<
/**
* Internal element buffer allocation function used during object
* construction.
*
* @param aCapacity Storage for this number of elements to allocate.
* @param aAlignment Buffer's required memory address alignment. 0 - use
* stdlib's default alignment.
*/
void allocinit( const capint aCapacity, const int aAlignment )
{
if( aAlignment == 0 )
{
Data = (T*) :: malloc( aCapacity * sizeof( T ));
DataAligned = Data;
Alignment = 0;
}
else
{
Data = (T*) :: malloc( aCapacity * sizeof( T ) + aAlignment );
DataAligned = alignptr( Data, aAlignment );
Alignment = aAlignment;
}
Capacity = aCapacity;
}
/**
* Function frees a previously allocated Data buffer.
*/
void freeData()
{
:: free( Data );
}
/**
* Function modifies the specified pointer so that it becomes memory
* address-aligned.
*
* @param ptr Pointer to align.
* @param align Alignment in bytes to apply.
* @return Pointer aligned to align bytes. Works with power-of-2
* alignments only. If no alignment is necessary, "align" bytes will be
* added to the pointer value.
*/
template< class Tp >
inline Tp alignptr( const Tp ptr, const uintptr_t align )
{
return( (Tp) ( (uintptr_t) ptr + align -
( (uintptr_t) ptr & ( align - 1 ))) );
}
};
/**
* Function optimizes the length of the symmetric-odd FIR filter by removing
* left- and rightmost elements that are below specific threshold.
*
* Synthetic test shows that filter gets optimized in 2..3% of cases and in
* each such case optimization reduces filter length by 6..8%. Optimization,
* however, may skew the results of algorithm modeling and complexity
* calculation leading to a choice of a less optimal algorithm.
*
* @param[in,out] Flt Buffer that contains filter being optimized.
* @param[in,out] FltLatency Variable that holds the current latency of the
* filter. May be adjusted on function return.
* @param Threshold Threshold level.
*/
template< class T >
inline void optimizeFIRFilter( CBuffer< T >& Flt, int& FltLatency,
T const Threshold = (T) 0.00001 )
{
int i;
// Optimize length.
for( i = 0; i <= FltLatency; i++ )
{
if( fabs( Flt[ i ]) >= Threshold || i == FltLatency )
{
if( i > 0 )
{
const int NewCapacity = Flt.getCapacity() - i * 2;
copyArray( &Flt[ i ], &Flt[ 0 ], NewCapacity );
Flt.truncateCapacity( NewCapacity );
FltLatency -= i;
}
break;
}
}
}
/**
* @brief Array of structured objects.
*
* Implements allocation of a linear array of objects of class T (which are
* initialized), addressable via operator[]. Each object is created via the
* "operator new". New object insertions are quick since implementation uses
* prior space allocation (capacity), thus not requiring frequent memory block
* reallocations.
*
* @tparam T Array element's type.
*/
template< class T >
class CStructArray
{
public:
CStructArray()
: ItemCount( 0 )
{
}
CStructArray( const CStructArray& Source )
: ItemCount( 0 )
, Items( Source.getItemCount() )
{
while( ItemCount < Source.getItemCount() )
{
Items[ ItemCount ] = new T( Source[ ItemCount ]);
ItemCount++;
}
}
~CStructArray()
{
clear();
}
CStructArray& operator = ( const CStructArray& Source )
{
clear();
const int NewCount = Source.ItemCount;
Items.updateCapacity( NewCount );
while( ItemCount < NewCount )
{
Items[ ItemCount ] = new T( Source[ ItemCount ]);
ItemCount++;
}
return( *this );
}
T& operator []( const int Index )
{
return( *Items[ Index ]);
}
const T& operator []( const int Index ) const
{
return( *Items[ Index ]);
}
/**
* Function creates a new object of type T with the default constructor
* and adds this object to the array.
*
* @return Reference to a newly added object.
*/
T& add()
{
if( ItemCount == Items.getCapacity() )
{
Items.increaseCapacity( ItemCount * 3 / 2 + 1 );
}
Items[ ItemCount ] = new T();
ItemCount++;
return( (*this)[ ItemCount - 1 ]);
}
/**
* Function changes number of allocated items. New items are created with
* the default constructor. If NewCount is below the current item count,
* items that are above NewCount range will be destructed.
*
* @param NewCount New requested item count.
*/
void setItemCount( const int NewCount )
{
if( NewCount > ItemCount )
{
Items.increaseCapacity( NewCount );
while( ItemCount < NewCount )
{
Items[ ItemCount ] = new T();
ItemCount++;
}
}
else
{
while( ItemCount > NewCount )
{
ItemCount--;
delete Items[ ItemCount ];
}
}
}
/**
* Function erases all items of *this array.
*/
void clear()
{
while( ItemCount > 0 )
{
ItemCount--;
delete Items[ ItemCount ];
}
}
/**
* @return The number of allocated items.
*/
int getItemCount() const
{
return( ItemCount );
}
private:
int ItemCount; ///< The number of items available in the array.
///<
CBuffer< T* > Items; ///< Element buffer.
///<
};
/**
* @brief Sine signal generator class.
*
* Class implements sine signal generator without biasing, with
* constructor-based initalization only. This generator uses oscillator
* instead of "sin" function.
*/
class CSineGen
{
public:
/**
* Constructor initializes *this sine signal generator.
*
* @param si Sine function increment, in radians.
* @param ph Starting phase, in radians. Add 0.5 * AVIR_PI for cosine
* function.
*/
CSineGen( const double si, const double ph )
: svalue1( sin( ph ))
, svalue2( sin( ph - si ))
, sincr( 2.0 * cos( si ))
{
}
/**
* @return The next value of the sine function, without biasing.
*/
double generate()
{
const double res = svalue1;
svalue1 = sincr * res - svalue2;
svalue2 = res;
return( res );
}
private:
double svalue1; ///< Current sine value.
///<
double svalue2; ///< Previous sine value.
///<
double sincr; ///< Sine value increment.
///<
};
/**
* @brief Peaked Cosine window function generator class.
*
* Class implements Peaked Cosine window function generator. Generates the
* right-handed half of the window function. The Alpha parameter of this
* window function offers the control of the balance between the early and
* later taps of the filter. E.g. at Alpha=1 both early and later taps are
* attenuated, but at Alpha=4 mostly later taps are attenuated. This offers a
* great control over ringing artifacts produced by a low-pass filter in image
* processing, without compromising achieved image sharpness.
*/
class CDSPWindowGenPeakedCosine
{
public:
/**
* Constructor initializes *this window function generator.
*
* @param aAlpha Alpha parameter, affects the peak shape (peak
* augmentation) of the window function. Should be >= 1.0.
* @param aLen2 Half filter's length (non-truncated).
*/
CDSPWindowGenPeakedCosine( const double aAlpha, const double aLen2 )
: Alpha( aAlpha )
, Len2( aLen2 )
, wn( 0 )
, w1( AVIR_PId2 / Len2, AVIR_PI * 0.5 )
{
}
/**
* @return The next Peaked Cosine window function coefficient.
*/
double generate()
{
const double h = pow( wn / Len2, Alpha );
wn++;
return( w1.generate() * ( 1.0 - h ));
}
private:
double Alpha; ///< Alpha parameter, affects the peak shape of window.
///<
double Len2; ///< Half length of the window function.
///<
int wn; ///< Window function integer position. 0 - center of the
///< window function.
///<
CSineGen w1; ///< Sine-wave generator.
///<
};
/**
* @brief FIR filter-based equalizer generator.
*
* Class implements an object used to generate symmetric-odd FIR filters with
* the specified frequency response (aka paragraphic equalizer). The
* calculated filter is windowed by the Peaked Cosine window function.
*
* In image processing, due to short length of filters being used (6-8 taps)
* the resulting frequency response of the filter is approximate and may be
* mathematically imperfect, but still adequate to the visual requirements.
*
* On a side note, this equalizer generator can be successfully used for audio
* signal equalization as well: for example, it is used in almost the same
* form in Voxengo Marvel GEQ equalizer plug-in.
*
* Filter generation is based on decomposition of frequency range into
* spectral bands, with each band represented by linear and ramp "kernels".
* When the filter is built, these kernels are combined together with
* different weights that approximate the required frequency response.
*/
class CDSPFIREQ
{
public:
/**
* Function initializes *this object with the required parameters. The
* gain of frequencies beyond the MinFreq..MaxFreq range are controlled by
* the first and the last band's gain.
*
* @param SampleRate Processing sample rate (use 2 for image processing).
* @param aFilterLength Required filter length in samples (taps). The
* actual filter length is truncated to an integer value.
* @param aBandCount Number of band crossover points required to control,
* including bands at MinFreq and MaxFreq.
* @param MinFreq Minimal frequency that should be controlled.
* @param MaxFreq Maximal frequency that should be controlled.
* @param IsLogBands "True" if the bands should be spaced logarithmically.
* @param WFAlpha Peaked Cosine window function's Alpha parameter.
*/
void init( const double SampleRate, const double aFilterLength,
const int aBandCount, const double MinFreq, const double MaxFreq,
const bool IsLogBands, const double WFAlpha )
{
FilterLength = aFilterLength;
BandCount = aBandCount;
CenterFreqs.alloc( BandCount );
z = (int) ceil( FilterLength * 0.5 );
zi = z + ( z & 1 );
z2 = z * 2;
CBuffer< double > oscbuf( z2 );
initOscBuf( oscbuf );
CBuffer< double > winbuf( z );
initWinBuf( winbuf, WFAlpha );
UseFirstVirtBand = ( MinFreq > 0.0 );
const int k = zi * ( BandCount + ( UseFirstVirtBand ? 1 : 0 ));
Kernels1.alloc( k );
Kernels2.alloc( k );
double m; // Frequency step multiplier.
double mo; // Frequency step offset (addition).
if( IsLogBands )
{
m = exp( log( MaxFreq / MinFreq ) / ( BandCount - 1 ));
mo = 0.0;
}
else
{
m = 1.0;
mo = ( MaxFreq - MinFreq ) / ( BandCount - 1 );
}
double f = MinFreq;
double x1 = 0.0;
double x2;
int si;
if( UseFirstVirtBand )
{
si = 0;
}
else
{
si = 1;
CenterFreqs[ 0 ] = 0.0;
f = f * m + mo;
}
double* kernbuf1 = &Kernels1[ 0 ];
double* kernbuf2 = &Kernels2[ 0 ];
int i;
for( i = si; i < BandCount; i++ )
{
x2 = f * 2.0 / SampleRate;
CenterFreqs[ i ] = x2;
fillBandKernel( x1, x2, kernbuf1, kernbuf2, oscbuf, winbuf );
kernbuf1 += zi;
kernbuf2 += zi;
x1 = x2;
f = f * m + mo;
}
if( x1 < 1.0 )
{
UseLastVirtBand = true;
fillBandKernel( x1, 1.0, kernbuf1, kernbuf2, oscbuf, winbuf );
}
else
{
UseLastVirtBand = false;
}
}
/**
* @return Filter's length, in samples (taps).
*/
int getFilterLength() const
{
return( z2 - 1 );
}
/**
* @return Filter's latency (group delay), in samples (taps).
*/
int getFilterLatency() const
{
return( z - 1 );
}
/**
* Function creates symmetric-odd FIR filter with the specified gain
* levels at band crossover points.
*
* @param BandGains Array of linear gain levels, count=BandCount specified
* in the init() function.
* @param[out] Filter Output filter buffer, length = getFilterLength().
*/
void buildFilter( const double* const BandGains, double* const Filter )
{
const double* kernbuf1 = &Kernels1[ 0 ];
const double* kernbuf2 = &Kernels2[ 0 ];
double x1 = 0.0;
double y1 = BandGains[ 0 ];
double x2;
double y2;
int i;
int si;
if( UseFirstVirtBand )
{
si = 1;
x2 = CenterFreqs[ 0 ];
y2 = y1;
}
else
{
si = 2;
x2 = CenterFreqs[ 1 ];
y2 = BandGains[ 1 ];
}
copyBandKernel( Filter, kernbuf1, kernbuf2, y1 - y2,
x1 * y2 - x2 * y1 );
kernbuf1 += zi;
kernbuf2 += zi;
x1 = x2;
y1 = y2;
for( i = si; i < BandCount; i++ )
{
x2 = CenterFreqs[ i ];
y2 = BandGains[ i ];
addBandKernel( Filter, kernbuf1, kernbuf2, y1 - y2,
x1 * y2 - x2 * y1 );
kernbuf1 += zi;
kernbuf2 += zi;
x1 = x2;
y1 = y2;
}
if( UseLastVirtBand )
{
addBandKernel( Filter, kernbuf1, kernbuf2, y1 - y2,
x1 * y2 - y1 );
}
for( i = 0; i < z - 1; i++ )
{
Filter[ z + i ] = Filter[ z - 2 - i ];
}
}
/**
* Function calculates filter's length (in samples) and latency depending
* on the required non-truncated filter length.
*
* @param aFilterLength Required filter length in samples (non-truncated).
* @param[out] Latency Resulting latency (group delay) of the filter,
* in samples (taps).
* @return Filter length in samples (taps).
*/
static int calcFilterLength( const double aFilterLength, int& Latency )
{
const int l = (int) ceil( aFilterLength * 0.5 );
Latency = l - 1;
return( l * 2 - 1 );
}
private:
double FilterLength; ///< Length of filter.
///<
int z; ///< Equals (int) ceil( FilterLength * 0.5 ).
///<
int zi; ///< Equals "z" if z is even, or z + 1 if z is odd. Used as a
///< Kernels1 and Kernels2 size multiplier and kernel buffer increment
///< to make sure each kernel buffer is 16-byte aligned.
///<
int z2; ///< Equals z * 2.
///<
int BandCount; ///< Number of controllable bands.
///<
CBuffer< double > CenterFreqs; ///< Center frequencies for all bands,
///< normalized to 0.0-1.0 range.
///<
CBuffer< double > Kernels1; ///< Half-length kernel buffers for each
///< spectral band (linear part).
///<
CBuffer< double > Kernels2; ///< Half-length kernel buffers for each
///< spectral band (ramp part).
///<
bool UseFirstVirtBand; ///< "True" if the first virtual band
///< (between 0.0 and MinFreq) should be used. The first virtual band
///< won't be used if MinFreq equals 0.0.
///<
bool UseLastVirtBand; ///< "True" if the last virtual band (between
///< MaxFreq and SampleRate * 0.5) should be used. The last virtual
///< band won't be used if MaxFreq * 2.0 equals SampleRate.
///<
/**
* Function initializes the "oscbuf" used in the fillBandKernel()
* function.
*
* @param oscbuf Oscillator buffer, length = z * 2.
*/
void initOscBuf( double* oscbuf ) const
{
int i = z;
while( i > 0 )
{
oscbuf[ 0 ] = 0.0;
oscbuf[ 1 ] = 1.0;
oscbuf += 2;
i--;
}
}
/**
* Function initializes window function buffer. This function generates
* Peaked Cosine window function.
*
* @param winbuf Windowing buffer.
* @param Alpha Peaked Cosine alpha parameter.
*/
void initWinBuf( double* winbuf, const double Alpha ) const
{
CDSPWindowGenPeakedCosine wf( Alpha, FilterLength * 0.5 );
int i;
for( i = 1; i <= z; i++ )
{
winbuf[ z - i ] = wf.generate();
}
}
/**
* Function fills first half of symmetric-odd FIR kernel for the band.
* This function should be called successively for adjacent bands.
* Previous band's x2 should be equal to current band's x1. A band kernel
* consists of 2 elements: linear kernel and ramp kernel.
*
* @param x1 Band's left corner frequency (0..1).
* @param x2 Band's right corner frequency (0..1).
* @param kernbuf1 Band kernel buffer 1 (linear part), length = z.
* @param kernbuf2 Band kernel buffer 2 (ramp part), length = z.
* @param oscbuf Oscillation buffer. Before the first call of the
* fillBandKernel() should be initialized with the call of the
* initOscBuf() function.
* @param winbuf Buffer that contains windowing function.
*/
void fillBandKernel( const double x1, const double x2, double* kernbuf1,
double* kernbuf2, double* oscbuf, const double* const winbuf )
{
const double s2_incr = AVIR_PI * x2;
const double s2_coeff = 2.0 * cos( s2_incr );
double s2_value1 = sin( s2_incr * ( -z + 1 ));
double c2_value1 = sin( s2_incr * ( -z + 1 ) + AVIR_PI * 0.5 );
oscbuf[ 0 ] = sin( s2_incr * -z );
oscbuf[ 1 ] = sin( s2_incr * -z + AVIR_PI * 0.5 );
int ks;
for( ks = 1; ks < z; ks++ )
{
const int ks2 = ks * 2;
const double s1_value1 = oscbuf[ ks2 ];
const double c1_value1 = oscbuf[ ks2 + 1 ];
oscbuf[ ks2 ] = s2_value1;
oscbuf[ ks2 + 1 ] = c2_value1;
const double x = AVIR_PI * ( ks - z );
const double v0 = winbuf[ ks - 1 ] / (( x1 - x2 ) * x );
kernbuf1[ ks - 1 ] = ( x2 * s2_value1 - x1 * s1_value1 +
( c2_value1 - c1_value1 ) / x ) * v0;
kernbuf2[ ks - 1 ] = ( s2_value1 - s1_value1 ) * v0;
s2_value1 = s2_coeff * s2_value1 - oscbuf[ ks2 - 2 ];
c2_value1 = s2_coeff * c2_value1 - oscbuf[ ks2 - 1 ];
}
kernbuf1[ z - 1 ] = ( x2 * x2 - x1 * x1 ) / ( x1 - x2 ) * 0.5;
kernbuf2[ z - 1 ] = -1.0;
}
/**
* Function copies band kernel's elements to the output buffer.
*
* @param outbuf Output buffer.
* @param kernbuf1 Kernel buffer 1 (linear part).
* @param kernbuf2 Kernel buffer 2 (ramp part).
* @param c Multiplier for linear kernel element.
* @param d Multiplier for ramp kernel element.
*/
void copyBandKernel( double* outbuf, const double* const kernbuf1,
const double* const kernbuf2, const double c, const double d ) const
{
int ks;
for( ks = 0; ks < z; ks++ )
{
outbuf[ ks ] = c * kernbuf1[ ks ] + d * kernbuf2[ ks ];
}
}
/**
* Function adds band kernel's elements to the output buffer.
*
* @param outbuf Output buffer.
* @param kernbuf1 Kernel buffer 1 (linear part).
* @param kernbuf2 Kernel buffer 2 (ramp part).
* @param c Multiplier for linear kernel element.
* @param d Multiplier for ramp kernel element.
*/
void addBandKernel( double* outbuf, const double* const kernbuf1,
const double* const kernbuf2, const double c, const double d ) const
{
int ks;
for( ks = 0; ks < z; ks++ )
{
outbuf[ ks ] += c * kernbuf1[ ks ] + d * kernbuf2[ ks ];
}
}
};
/**
* @brief Low-pass filter windowed by Peaked Cosine window function.
*
* This class implements calculation of linear-phase symmetric-odd FIR
* low-pass filter windowed by the Peaked Cosine window function, for image
* processing applications.
*/
class CDSPPeakedCosineLPF
{
public:
int fl2; ///< Half filter's length, excluding the peak value. This value
///< can be also used as filter's latency in samples (taps).
///<
int FilterLen; ///< Filter's length in samples (taps).
///<
/**
* Constructor initalizes *this object.
*
* @param aLen2 Half-length (non-truncated) of low-pass filter, in samples
* (taps).
* @param aFreq2 Low-pass filter's corner frequency [0; pi].
* @param aAlpha Peaked Cosine window function Alpha parameter.
*/
CDSPPeakedCosineLPF( const double aLen2, const double aFreq2,
const double aAlpha )
: fl2( (int) ceil( aLen2 ) - 1 )
, FilterLen( fl2 + fl2 + 1 )
, Len2( aLen2 )
, Freq2( aFreq2 )
, Alpha( aAlpha )
{
}
/**
* Function generates a linear-phase low-pass filter windowed by Peaked
* Cosine window function.
*
* @param[out] op Output buffer, length = FilterLen (fl2 * 2 + 1).
* @param DCGain Required gain at DC. The resulting filter will be
* normalized to achieve this DC gain.
*/
template< class T >
void generateLPF( T* op, const double DCGain )
{
CDSPWindowGenPeakedCosine wf( Alpha, Len2 );
CSineGen f2( Freq2, 0.0 );
op += fl2;
T* op2 = op;
f2.generate();
int t = 1;
*op = (T) ( Freq2 * wf.generate() / AVIR_PI );
double s = *op;
while( t <= fl2 )
{
const double v = f2.generate() * wf.generate() / t / AVIR_PI;
op++;
op2--;
*op = (T) v;
*op2 = (T) v;
s += *op + *op2;
t++;
}
t = FilterLen;
s = DCGain / s;
while( t > 0 )
{
*op2 = (T) ( *op2 * s );
op2++;
t--;
}
}
private:
double Len2; ///< Half-length (non-truncated) of low-pass filter, in
///< samples (taps).
///<
double Freq2; ///< Low-pass filter's corner frequency.
///<
double Alpha; ///< Peaked Cosine window function Alpha parameter.
///<
};
/**
* @brief Buffer class for parametrized low-pass filter.
*
* This class extends the CBuffer< double > class by adding several variables
* that define a symmetric-odd FIR low-pass filter windowed by Peaked Cosine
* window function. This class can be used to compare filters without
* comparing their buffer contents.
*/
class CFltBuffer : public CBuffer< double >
{
public:
double Len2; ///< Half-length (non-truncated) of low-pass filters, in
///< samples (taps).
///<
double Freq; ///< Low-pass filter's corner frequency.
///<
double Alpha; ///< Peaked Cosine window function Alpha parameter.
///<
double DCGain; ///< DC gain applied to the filter.
///<
CFltBuffer()
: CBuffer< double >()
, Len2( 0.0 )
, Freq( 0.0 )
, Alpha( 0.0 )
, DCGain( 0.0 )
{
}
/**
* @param b2 Filter buffer to compare *this object to.
* @return Operator returns "true" if both filters have same parameters.
*/
bool operator == ( const CFltBuffer& b2 ) const
{
return( Len2 == b2.Len2 && Freq == b2.Freq && Alpha == b2.Alpha &&
DCGain == b2.DCGain );
}
};
/**
* @brief Sinc function-based fractional delay filter bank.
*
* Class implements storage and initialization of a bank of sinc
* function-based fractional delay filters, expressed as 1st order polynomial
* interpolation coefficients. The filters are produced from a single "long"
* windowed low-pass filter. Also supports 0th-order ("nearest neighbor")
* interpolation.
*
* This class also supports multiplication of each fractional delay filter by
* an external filter (usually a low-pass filter).
*
* @tparam fptype Specifies storage type of the filter coefficients bank. The
* filters are initially calculated using the "double" precision.
*/
template< class fptype >
class CDSPFracFilterBankLin
{
public:
CDSPFracFilterBankLin()
: Order( -1 )
{
}
/**
* Copy constructor copies a limited set of parameters of the source
* filter bank. The actual filters are not copied. Such copying is used
* during filtering steps "modeling" stage. A further init() function
* call is required.
*
* @param s Source filter bank.
*/
void copyInitParams( const CDSPFracFilterBankLin& s )
{
WFLen2 = s.WFLen2;
WFFreq = s.WFFreq;
WFAlpha = s.WFAlpha;
FracCount = s.FracCount;
Order = s.Order;
Alignment = s.Alignment;
SrcFilterLen = s.SrcFilterLen;
FilterLen = s.FilterLen;
FilterSize = s.FilterSize;
IsSrcTableBuilt = false;
ExtFilter = s.ExtFilter;
TableFillFlags.alloc( s.TableFillFlags.getCapacity() );
int i;
// Copy table fill flags, but shifted so that further initialization
// is still possible (such feature should not be used, though).
for( i = 0; i < TableFillFlags.getCapacity(); i++ )
{
TableFillFlags[ i ] = (uint8_t) ( s.TableFillFlags[ i ] << 2 );
}
}
/**
* Operator compares *this filter bank and another filter bank and returns
* "true" if their parameters are equal. Alignment is not taken into
* account.
*
* @param s Filter bank to compare to.
* @return "True" if compared banks have equal parameters.
*/
bool operator == ( const CDSPFracFilterBankLin& s ) const
{
return( Order == s.Order && WFLen2 == s.WFLen2 &&
WFFreq == s.WFFreq && WFAlpha == s.WFAlpha &&
FracCount == s.FracCount && ExtFilter == s.ExtFilter );
}
/**
* Function initializes (builds) the filter bank based on the supplied
* parameters. If the supplied parameters are equal to previously defined
* parameters, function does nothing (alignment is assumed to be never
* changing between the init() function calls).
*
* @param ReqFracCount Required number of fractional delays in the filter
* bank. The minimal value is 2.
* @param ReqOrder Required order of the interpolation polynomial
* (0 or 1).
* @param BaseLen Low-pass filter's base length, in samples (taps).
* Affects the actual length of the filter and its overall steepness.
* @param Cutoff Low-pass filter's normalized cutoff frequency [0; 1].
* @param aWFAlpha Peaked Cosine window function's Alpha parameter.
* @param aExtFilter External filter to apply to each fractional delay
* filter.
* @param aAlignment Memory alignment of the filter bank, power-of-2
* value. 0 - use default stdlib alignment.
* @param FltLenAlign Filter's length alignment, power-of-2 value.
*/
void init( const int ReqFracCount, const int ReqOrder,
const double BaseLen, const double Cutoff, const double aWFAlpha,
const CFltBuffer& aExtFilter, const int aAlignment = 0,
const int FltLenAlign = 1 )
{
double NewWFLen2 = 0.5 * BaseLen * ReqFracCount;
double NewWFFreq = AVIR_PI * Cutoff / ReqFracCount;
double NewWFAlpha = aWFAlpha;
if( ReqOrder == Order && NewWFLen2 == WFLen2 && NewWFFreq == WFFreq &&
NewWFAlpha == WFAlpha && ReqFracCount == FracCount &&
aExtFilter == ExtFilter )
{
IsInitRequired = false;
return;
}
WFLen2 = NewWFLen2;
WFFreq = NewWFFreq;
WFAlpha = NewWFAlpha;
FracCount = ReqFracCount;
Order = ReqOrder;
Alignment = aAlignment;
ExtFilter = aExtFilter;
CDSPPeakedCosineLPF p( WFLen2, WFFreq, WFAlpha );
SrcFilterLen = ( p.fl2 / ReqFracCount + 1 ) * 2;
const int ElementSize = ReqOrder + 1;
FilterLen = SrcFilterLen;
if( ExtFilter.getCapacity() > 0 )
{
FilterLen += ExtFilter.getCapacity() - 1;
}
FilterLen = ( FilterLen + FltLenAlign - 1 ) & ~( FltLenAlign - 1 );
FilterSize = FilterLen * ElementSize;
IsSrcTableBuilt = false;
IsInitRequired = true;
}
/**
* @return The length of each fractional delay filter, in samples (taps).
* Always an even value.
*/
int getFilterLen() const
{
return( FilterLen );
}
/**
* @return The number of fractional filters in use by *this bank.
*/
int getFracCount() const
{
return( FracCount );
}
/**
* @return The order of the interpolation polynomial.
*/
int getOrder() const
{
return( Order );
}
/**
* Function returns the pointer to the specified interpolation table
* filter.
*
* @param i Filter (fractional delay) index, in the range 0 to
* ReqFracCount - 1, inclusive.
* @return Pointer to filter. Higher order polynomial coefficients are
* stored after after previous order coefficients, separated by FilterLen
* elements.
*/
const fptype* getFilter( const int i )
{
if( !IsSrcTableBuilt )
{
buildSrcTable();
}
fptype* const Res = &Table[ i * FilterSize ];
if(( TableFillFlags[ i ] & 2 ) == 0 )
{
createFilter( i );
TableFillFlags[ i ] |= 2;
if( Order > 0 )
{
createFilter( i + 1 );
const fptype* const Res2 = Res + FilterSize;
fptype* const op = Res + FilterLen;
int j;
// Create higher-order interpolation coefficients (linear
// interpolation).
for( j = 0; j < FilterLen; j++ )
{
op[ j ] = Res2[ j ] - Res[ j ];
}
}
}
return( Res );
}
/**
* Function makes sure all fractional delay filters were created.
*/
void createAllFilters()
{
int i;
for( i = 0; i < FracCount; i++ )
{
getFilter( i );
}
}
/**
* Function returns an approximate initialization complexity, expressed in
* the number of multiply-add operations. This includes fractional delay
* filters calculation and multiplication by an external filter. This
* function can only be called after the init() function.
*
* @param FracUseMap Fractional delays use map, each element corresponds
* to a single fractional delay, will be compared to the internal table
* fill flags. This map should include 0 and 1 values only.
* @return The complexity of the initialization, expressed in the number
* of multiply-add operations.
*/
int calcInitComplexity( const CBuffer< uint8_t >& FracUseMap ) const
{
const int FltInitCost = 65; // Cost to initialize a single sample
// of the fractional delay filter.
const int FltUseCost = FilterLen * Order +
SrcFilterLen * ExtFilter.getCapacity(); // Cost to use a single
// fractional delay filter.
const int ucb[ 2 ] = { 0, FltUseCost };
int ic;
int i;
if( IsInitRequired )
{
ic = FracCount * SrcFilterLen * FltInitCost;
for( i = 0; i < FracCount; i++ )
{
ic += ucb[ FracUseMap[ i ]];
}
}
else
{
ic = 0;
for( i = 0; i < FracCount; i++ )
{
if( FracUseMap[ i ] != 0 )
{
ic += ucb[ TableFillFlags[ i ] == 0 ? 1 : 0 ];
}
}
}
return( ic );
}
private:
static const int InterpPoints = 2; ///< The maximal number of points the
///< interpolation is based on.
///<
double WFLen2; ///< Window function's Len2 parameter.
///<
double WFFreq; ///< Window function's Freq parameter.
///<
double WFAlpha; ///< Window function's Alpha parameter.
///<
int FracCount; ///< The required number of fractional delay filters.
///<
int Order; ///< The order of the interpolation polynomial.
///<
int Alignment; ///< The required filter table alignment.
///<
int SrcFilterLen; ///< Length of the "source" filters. This is always an
///< even value.
///<
int FilterLen; ///< Specifies the number of samples (taps) each fractional
///< delay filter has. This is always an even value, adjusted by the
///< FltLenAlign.
///<
int FilterSize; ///< The size of a single filter element, equals
///< FilterLen * ElementSize.
///<
bool IsInitRequired; ///< "True" if SrcTable filter table initialization
///< is required. This value is available only after the call to the
///< init() function.
///<
CBuffer< fptype > Table; ///< Interpolation table, size equals to
///< ReqFracCount * FilterLen * ElementSize.
///<
CBuffer< uint8_t > TableFillFlags; ///< Contains ReqFracCount + 1
///< elements. Bit 0 of every element is 1 if Table already contains
///< the filter from SrcTable filtered by ExtFilter. Bit 1 of every
///< element means higher order coefficients were filled for the
///< filter.
///<
CFltBuffer ExtFilter; ///< External filter that should be applied to every
///< fractional delay filter. Can be empty. Half of this filter's
///< capacity is used as latency (group delay) value of the filter.
///<
CBuffer< double > SrcTable; ///< Source table of delay filters, contains
///< ReqFracCount + 1 elements. This table is used to fill the Table
///< with the actual filters, filtered by an external filter.
///<
bool IsSrcTableBuilt; ///< "True" if the SrcTable was built already. This
///< variable is set to "false" in the init() function.
///<
/**
* Function builds source table used in the createFilter() function.
*/
void buildSrcTable()
{
IsSrcTableBuilt = true;
IsInitRequired = false;
CDSPPeakedCosineLPF p( WFLen2, WFFreq, WFAlpha );
const int BufLen = SrcFilterLen * FracCount + InterpPoints - 1;
const int BufOffs = InterpPoints / 2 - 1;
const int BufCenter = SrcFilterLen * FracCount / 2 + BufOffs;
CBuffer< double > Buf( BufLen );
memset( Buf, 0, ( BufCenter - p.fl2 ) * sizeof( double ));
int i = BufLen - BufCenter - p.fl2 - 1;
memset( &Buf[ BufLen - i ], 0, i * sizeof( double ));
p.generateLPF( &Buf[ BufCenter - p.fl2 ], FracCount );
SrcTable.alloc(( FracCount + 1 ) * SrcFilterLen );
TableFillFlags.alloc( FracCount + 1 );
int j;
double* op0 = SrcTable;
for( i = FracCount; i >= 0; i-- )
{
TableFillFlags[ i ] = 0;
double* p = Buf + BufOffs + i;
for( j = 0; j < SrcFilterLen; j++ )
{
op0[ 0 ] = p[ 0 ];
op0++;
p += FracCount;
}
}
Table.alloc(( FracCount + 1 ) * FilterSize, Alignment );
}
/**
* Function creates the specified filter in the Table by copying it from
* the SrcTable and filtering by ExtFilter. Function does nothing if
* filter was already created.
*
* @param k Filter index to create, in the range 0 to FracCount,
* inclusive.
*/
void createFilter( const int k )
{
if( TableFillFlags[ k ] != 0 )
{
return;
}
TableFillFlags[ k ] |= 1;
const int ExtFilterLatency = ExtFilter.getCapacity() / 2;
const int ResLatency = ExtFilterLatency + SrcFilterLen / 2;
int ResLen = SrcFilterLen;
if( ExtFilter.getCapacity() > 0 )
{
ResLen += ExtFilter.getCapacity() - 1;
}
const int ResOffs = FilterLen / 2 - ResLatency;
fptype* op = &Table[ k * FilterSize ];
int i;
for( i = 0; i < ResOffs; i++ )
{
op[ i ] = 0.0;
}
for( i = ResOffs + ResLen; i < FilterLen; i++ )
{
op[ i ] = 0.0;
}
op += ResOffs;
const double* const srcflt = &SrcTable[ k * SrcFilterLen ];
if( ExtFilter.getCapacity() == 0 )
{
for( i = 0; i < ResLen; i++ )
{
op[ i ] = (fptype) srcflt[ i ];
}
return;
}
// Perform convolution of extflt and srcflt.
const double* const extflt = &ExtFilter[ 0 ];
int j;
for( j = 0; j < ResLen; j++ )
{
int k = 0;
int l = j - ExtFilter.getCapacity() + 1;
int r = l + ExtFilter.getCapacity();
if( l < 0 )
{
k -= l;
l = 0;
}
if( r > SrcFilterLen )
{
r = SrcFilterLen;
}
const double* const extfltb = extflt + k;
const double* const srcfltb = srcflt + l;
double s = 0.0;
l = r - l;
for( i = 0; i < l; i++ )
{
s += extfltb[ i ] * srcfltb[ i ];
}
op[ j ] = (fptype) s;
}
}
};
/**
* @brief Thread pool for multi-threaded image resizing operation.
*
* This base class is used to organize a multi-threaded image resizing
* operation. The thread pool should consist of threads that initially wait
* for a signal. Upon receiving a signal (via the startAllWorkloads()
* function) each previously added thread should execute its workload's
* process() function once, and return to the wait signal state again. The
* thread pool should be also able to efficiently wait for all workloads to
* finish via the waitAllWorkloadsToFinish() function.
*
* The image resizing algorithm makes calls to functions of this class.
*/
class CImageResizerThreadPool
{
public:
CImageResizerThreadPool()
{
}
virtual ~CImageResizerThreadPool()
{
}
/**
* @brief Thread pool's workload object class.
*
* This class should be used as a base class for objects that perform the
* actual work spread over several threads.
*/
class CWorkload
{
public:
virtual ~CWorkload()
{
}
/**
* Function that gets called from the thread when thread pool's
* startAllWorkloads() function is called.
*/
virtual void process() = 0;
};
/**
* @return The suggested number of workloads (and their associated
* threads) to add. The minimal value this function can return is 1. The
* usual value may depend on the number of physical and virtual cores
* present in the system, and on other considerations.
*/
virtual int getSuggestedWorkloadCount() const
{
return( 1 );
}
/**
* Function adds a new workload (and possibly thread) to the thread pool.
* The caller decides how many parallel workloads (and threads) it
* requires, but this number will not exceed the value returned by the
* getSuggestedWorkloadCount() function. It is implementation-specific how
* many workloads to associate with a single thread. But for efficiency
* reasons each workload should be associated with its own thread.
*
* Note that the same set of workload objects will be processed each time
* the startAllWorkloads() function is called. This means that workload
* objects are added only once. The caller changes the state of the
* workload objects and then calls the startAllWorkloads() function to
* process them.
*
* @param Workload Workload object whose process() function will be called
* from within the thread when the startAllWorkloads() function is called.
*/
virtual void addWorkload( CWorkload* const Workload )
{
}
/**
* Function starts all workloads associated with threads previously added
* via the addWorkload() function. It is assumed that this function
* performs the necessary "memory barrier" (or "cache sync") kind of
* operation so that all threads catch up the prior changes made to the
* workload objects during their wait state.
*/
virtual void startAllWorkloads()
{
}
/**
* Function waits for all workloads to finish.
*/
virtual void waitAllWorkloadsToFinish()
{
}
/**
* Function removes all workloads previously added via the addWorkload()
* function. This function gets called only after the
* waitAllWorkloadsToFinish() function call.
*/
virtual void removeAllWorkloads()
{
}
};
/**
* @brief Resizing algorithm parameters structure.
*
* This structure holds all selectable parameters used by the resizing
* algorithm at various stages, for both downsizing and upsizing. There are no
* other parameters exist that can optimize the performance of the resizing
* algorithm. Filter length parameters can take fractional values.
*
* Beside quality, these parameters (except Alpha parameters) directly affect
* the computative cost of the resizing algorithm. It is possible to trade
* the visual quality for computative cost.
*
* Anti-alias filtering during downsizing can be defined as a considerable
* reduction of contrast of smallest features of an image. Unfortunately, such
* de-contrasting partially affects features of all sizes thus producing a
* non-linearity of frequency response. All pre-defined parameter sets are
* described by 3 values separated by slashes. The first value is the
* de-contrasting factor of small features (which are being removed) while
* the second value is the de-contrasting factor of large features (which
* should remain intact), with value of 1 equating to "no contrast change".
* The third value is the optimization score (see below), with value of 0
* equating to the "perfect" linearity of frequency response.
*
* The pre-defined parameter sets offered by this library were auto-optimized
* for the given LPFltBaseLen, IntFltLen and CorrFltAlpha values. The
* optimization goal was to minimize the score: the sum of squares of the
* difference between original and processed images (which was not actually
* resized, k=1). The original image was a 0.5 megapixel uniformly-distributed
* white-noise image with pixel intensities in the 0-1 range. Such goal
* converges very well and produces filtering system with the flattest
* frequency response possible for the given constraints. With this goal,
* increasing the LPFltBaseLen value reduces the general amount of aliasing
* artifacts.
*/
struct CImageResizerParams
{
double CorrFltAlpha; ///< Alpha parameter of the Peaked Cosine window
///< function used on the correction filter. The "usable" values are
///< in the narrow range 1.0 to 1.5.
///<
double CorrFltLen; ///< Correction filter's length in samples (taps). The
///< "usable" range is narrow, 5.5 to 8, as to minimize the
///< "overcorrection" which is mathematically precise, but visually
///< unacceptable.
///<
double IntFltAlpha; ///< Alpha parameter of the Peaked Cosine window
///< function used on the interpolation low-pass filter. The "usable"
///< values are in the range 1.5 to 2.5.
///<
double IntFltCutoff; ///< Interpolation low-pass filter's cutoff frequency
///< (normalized, [0; 1]). The "usable" range is 0.6 to 0.8.
///<
double IntFltLen; ///< Interpolation low-pass filter's length in samples
///< (taps). The length value should be at least 18 or otherwise a
///< "dark grid" artifact will be introduced if a further sharpening
///< is applied. IntFltLen together with other IntFlt parameters
///< should be tuned in a way that produces the flattest frequency
///< response in 0-0.5 normalized frequency range (this range is due
///< to 2X upsampling).
///<
double LPFltAlpha; ///< Alpha parameter of the Peaked Cosine window
///< function used on the low-pass filter. The "usable" values are
///< in the range 1.5 to 6.5.
///<
double LPFltBaseLen; ///< Base length of the low-pass (aka anti-aliasing
///< or reconstruction) filter, in samples (taps), further adjusted by
///< the actual cutoff frequency, upsampling and downsampling factors.
///< The "usable" range is between 6 and 9.
///<
double LPFltCutoffMult; ///< Low-pass filter's cutoff frequency
///< multiplier. This value can be both below and above 1.0 as
///< low-pass filters are inserted on downsampling and upsampling
///< steps and always have corner frequency equal to or below 0.5pi.
///< This multiplier shifts low-pass filter's corner frequency towards
///< lower (if below 1.0) or higher (if above 1.0) frequencies. This
///< multiplier can be way below 1.0 since any additional
///< high-frequency damping will be partially corrected by the
///< correction filter. The "usable" range is 0.3 to 1.0.
///<
CImageResizerParams()
: HBFltAlpha( 1.75395 )
, HBFltCutoff( 0.40356 )
, HBFltLen( 22.00000 )
{
}
double HBFltAlpha; ///< Half-band filter's Alpha. Assigned internally.
///<
double HBFltCutoff; ///< Half-band filter's cutoff point [0; 1]. Assigned
///< internally.
///<
double HBFltLen; ///< Length of the half-band low-pass filter. Assigned
///< internally. Internally used to perform 2X or higher downsampling.
///< These filter parameters should be treated as "technical" and do
///< not require adjustment as they were tuned to suit all
///< combinations of other parameters. This half-band filter provides
///< a wide transition band (for minimal ringing artifacts) and a high
///< stop-band attenuation (for minimal aliasing).
///<
};
/**
* @brief The default set of resizing algorithm parameters
* (10.01/1.029/0.019169).
*
* This is the default set of resizing parameters that was designed to deliver
* a sharp image while still providing a low amount of ringing artifacts, and
* having a reasonable computational cost.
*/
struct CImageResizerParamsDef : public CImageResizerParams
{
CImageResizerParamsDef()
{
CorrFltAlpha = 1.0;//10.01/1.88/1.029(522.43)/0.019169:258648,446808
CorrFltLen = 6.30770;
IntFltAlpha = 2.27825;
IntFltCutoff = 0.75493;
IntFltLen = 18.0;
LPFltAlpha = 3.40127;
LPFltBaseLen = 7.78;
LPFltCutoffMult = 0.78797;
}
};
/**
* @brief Set of resizing algorithm parameters for ultra-low-ringing
* performance (7.69/1.069/0.000245).
*
* This set of resizing algorithm parameters offers the lowest amount of
* ringing this library is capable of providing while still offering a decent
* quality. Low ringing is attained at the expense of higher aliasing
* artifacts and a slightly reduced contrast.
*/
struct CImageResizerParamsULR : public CImageResizerParams
{
CImageResizerParamsULR()
{
CorrFltAlpha = 1.0;//7.69/1.97/1.069(31445.45)/0.000245:258627,436845
CorrFltLen = 5.83280;
IntFltAlpha = 2.11453;
IntFltCutoff = 0.73986;
IntFltLen = 18.0;
LPFltAlpha = 1.73455;
LPFltBaseLen = 6.40;
LPFltCutoffMult = 0.61314;
}
};
/**
* @brief Set of resizing algorithm parameters for low-ringing performance
* (7.86/1.065/0.000106).
*
* This set of resizing algorithm parameters offers a very low-ringing
* performance at the expense of higher aliasing artifacts and a slightly
* reduced contrast.
*/
struct CImageResizerParamsLR : public CImageResizerParams
{
CImageResizerParamsLR()
{
CorrFltAlpha = 1.0;//7.86/1.96/1.065(73865.02)/0.000106:258636,437381
CorrFltLen = 5.87671;
IntFltAlpha = 2.25322;
IntFltCutoff = 0.74090;
IntFltLen = 18.0;
LPFltAlpha = 1.79306;
LPFltBaseLen = 7.00;
LPFltCutoffMult = 0.68881;
}
};
/**
* @brief Set of resizing algorithm parameters for lower-ringing performance
* (8.86/1.046/0.010168).
*
* This set of resizing algorithm parameters offers a lower-ringing
* performance in comparison to the default setting, at the expense of higher
* aliasing artifacts and a slightly reduced contrast.
*/
struct CImageResizerParamsLow : public CImageResizerParams
{
CImageResizerParamsLow()
{
CorrFltAlpha = 1.0;//8.86/1.92/1.046(871.54)/0.010168:258647,442252
CorrFltLen = 6.09757;
IntFltAlpha = 2.36704;
IntFltCutoff = 0.74674;
IntFltLen = 18.0;
LPFltAlpha = 2.19427;
LPFltBaseLen = 7.66;
LPFltCutoffMult = 0.75380;
}
};
/**
* @brief Set of resizing algorithm parameters for low-aliasing
* resizing (11.81/1.012/0.038379).
*
* This set of resizing algorithm parameters offers a considerable
* anti-aliasing performance with a good frequency response linearity (and
* contrast). This is an intermediate setting between the default and Ultra
* parameters.
*/
struct CImageResizerParamsHigh : public CImageResizerParams
{
CImageResizerParamsHigh()
{
CorrFltAlpha = 1.0;//11.81/1.83/1.012(307.84)/0.038379:258660,452719
CorrFltLen = 6.80909;
IntFltAlpha = 2.44917;
IntFltCutoff = 0.75856;
IntFltLen = 18.0;
LPFltAlpha = 4.39527;
LPFltBaseLen = 8.18;
LPFltCutoffMult = 0.79172;
}
};
/**
* @brief Set of resizing algorithm parameters for ultra low-aliasing
* resizing (13.65/1.001/0.000483).
*
* This set of resizing algorithm parameters offers a very considerable
* anti-aliasing performance with a good frequency response linearity (and
* contrast). This set of parameters is computationally expensive and may
* produce ringing artifacts on sharp features.
*/
struct CImageResizerParamsUltra : public CImageResizerParams
{
CImageResizerParamsUltra()
{
CorrFltAlpha = 1.0;//13.65/1.79/1.001(28288.41)/0.000483:258658,457974
CorrFltLen = 7.48060;
IntFltAlpha = 1.93750;
IntFltCutoff = 0.75462;
IntFltLen = 18.0;
LPFltAlpha = 5.55209;
LPFltBaseLen = 8.34;
LPFltCutoffMult = 0.78002;
}
};
/**
* @brief Image resizing variables class.
*
* This is an utility "catch all" class that defines various variables used
* during image resizing. Several variables that are explicitly initialized in
* this class' constructor are also used as additional "input" variables to
* the image resizing function. These variables will not be changed by the
* avir::CImageResizer<>::resizeImage() function.
*/
class CImageResizerVars
{
public:
int ElCount; ///< The number of "fptype" elements used to store 1 pixel.
///<
int ElCountIO; ///< The number of source and destination image's elements
///< used to store 1 pixel.
///<
int fppack; ///< The number of atomic types stored in a single "fptype"
///< element.
///<
int fpalign; ///< Suggested alignment size in bytes. This is not a
///< required alignment, because image resizing algorithm cannot be
///< made to have a strictly aligned data access in all cases (e.g.
///< de-interleaved interpolation cannot perform aligned accesses).
///<
int elalign; ///< Length alignment of arrays of elements. This applies to
///< filters and intermediate buffers: this constant forces filters
///< and scanlines to have a length which is a multiple of this value,
///< for more efficient SIMD implementation.
///<
int packmode; ///< 0 if interleaved packing, 1 if de-interleaved.
///<
int BufLen[ 2 ]; ///< Intermediate buffers' lengths in "fptype" elements.
int BufOffs[ 2 ]; ///< Offsets into the intermediate buffers, used to
///< provide prefix elements required during processing so that no
///< "out of range" access happens. This offset is a multiple of
///< ElCount if pixels are stored in interleaved form.
///<
double k; ///< Resizing step coefficient, updated to reflect the actually
///< used coefficient during resizing.
///<
double o; ///< Starting pixel offset inside the source image, updated to
///< reflect the actually used offset during resizing.
///<
int ResizeStep; ///< Index of the resizing step in the latest filtering
///< steps array.
///<
double InGammaMult; ///< Input gamma multiplier, used to convert input
///< data to 0 to 1 range. 0.0 if no gamma is in use.
///<
double OutGammaMult; ///< Output gamma multiplier, used to convert data to
///< 0 to 255/65535 range. 0.0 if no gamma is in use.
///<
double ox; ///< Start X pixel offset within source image (can be
///< negative). Positive offset moves image to the left.
///<
double oy; ///< Start Y pixel offset within source image (can be
///< negative). Positive offset moves image to the top.
///<
CImageResizerThreadPool* ThreadPool; ///< Thread pool to be used by the
///< image resizing function. Set to NULL to use single-threaded
///< processing.
///<
bool UseSRGBGamma; ///< Perform sRGB gamma linearization (correction).
///<
int BuildMode; ///< The build mode to use, for debugging purposes. Set to
///< -1 to select a minimal-complexity mode automatically. All build
///< modes deliver similar results with minor deviations.
///<
int RndSeed; ///< Random seed parameter. This parameter may be incremented
///< after each random generator initialization. The use of this
///< variable depends on the ditherer implementation.
///<
CImageResizerVars()
: ox( 0.0 )
, oy( 0.0 )
, ThreadPool( nullptr )
, UseSRGBGamma( false )
, BuildMode( -1 )
, RndSeed( 0 )
{
}
};
/**
* @brief Image resizer's filtering step class.
*
* Class defines data to perform a single filtering step over a whole
* horizontal or vertical scanline. Resizing consists of 1 or more steps that
* may be performed before the actual resizing takes place. Filtering may also
* follow a resizing step. Each step must ensure that scanline data contains
* enough pixels to perform the next step (which may be resizing) without
* exceeding scanline's bounds.
*
* A derived class must implement several "const" and "static" functions that
* are used to perform the actual filtering in interleaved or de-interleaved
* mode.
*
* @tparam fptype Floating point type to use for storing pixel elements. SIMD
* types can be used: in this case each element may hold a whole pixel.
* @tparam fptypeatom The atomic type the "fptype" consists of.
*/
template< class fptype, class fptypeatom >
class CImageResizerFilterStep
{
public:
bool IsUpsample; ///< "True" if this step is an upsampling step, "false"
///< if downsampling step. Should be set to "false" if ResampleFactor
///< equals 0.
///<
int ResampleFactor; ///< Resample factor (>=1). If 0, this is a resizing
///< step. This value should be >1 if IsUpsample equals "true".
///<
CBuffer< fptype > Flt; ///< Filter to use at this step.
///<
CFltBuffer FltOrig; ///< Originally-designed filter. This buffer may not
///< be assigned. Assigned by filters that precede the resizing step
///< if such filter is planned to be embedded into the interpolation
///< filter as "external" filter. If IsUpsample=true and this filter
///< buffer is not empty, the upsampling step will not itself apply
///< any filtering over upsampled input scanline.
///<
double DCGain; ///< DC gain which was applied to the filter. Not defined
///< if ResampleFactor = 0.
///<
int FltLatency; ///< Filter's latency (group delay, shift) in pixels.
///<
const CImageResizerVars* Vars; ///< Image resizing-related variables.
///<
int InLen; ///< Input scanline's length in pixels.
///<
int InBuf; ///< Input buffer index, 0 or 1.
///<
int InPrefix; ///< Required input prefix pixels. These prefix pixels will
///< be filled with source scanline's first pixel value. If IsUpsample
///< is "true", this is the additional number of times the first pixel
///< will be filtered before processing scanline, this number is also
///< reflected in the OutPrefix.
///<
int InSuffix; ///< Required input suffix pixels. These suffix pixels will
///< be filled with source scanline's last pixel value. If IsUpsample
///< is "true", this is the additional number of times the last pixel
///< will be filtered before processing scanline, this number is also
///< reflected in the OutSuffix.
///<
int InElIncr; ///< Pixel element increment within the input buffer, used
///< during de-interleaved processing: in this case each image's
///< channel is stored independently, InElIncr elements apart.
///<
int OutLen; ///< Length of the resulting scanline.
///<
int OutBuf; ///< Output buffer index. 0 or 1; 2 for the last step.
///<
int OutPrefix; ///< Required output prefix pixels. These prefix pixels
///< will not be pre-filled with any values. Value is valid only if
///< IsUpsample equals "true".
///<
int OutSuffix; ///< Required input suffix pixels. These suffix pixels will
///< not be pre-filled with any values. Value is valid only if
///< IsUpsample equals "true".
///<
int OutElIncr; ///< Pixel element increment within the output buffer, used
///< during de-interleaved processing. Equals to the InBufElIncr of
///< the next step.
///<
CBuffer< fptype > PrefixDC; ///< DC component fluctuations added at the
///< start of the resulting scanline, used when IsUpsample equals
///< "true".
///<
CBuffer< fptype > SuffixDC; ///< DC component fluctuations added at the
///< end of the resulting scanline, used when IsUpsample equals
///< "true".
///<
int EdgePixelCount; ///< The number of edge pixels added. Affects the
///< initial position within the input scanline, used to produce edge
///< pixels. This variable is used and should be defined when
///< IsUpsample=false and ResampleFactor>0. When assigning this
///< variable it is also necessary to update InPrefix, OutLen and
///< Vars.o variables.
///<
static const int EdgePixelCountDef = 3; ///< The default number of pixels
///< additionally produced at scanline edges during filtering. This is
///< required to reduce edge artifacts.
///<
/**
* @brief Resizing position structure.
*
* Structure holds resizing position and pointer to fractional delay
* filter.
*/
struct CResizePos
{
int SrcPosInt; ///< Source scanline position.
///<
int fti; ///< Fractional delay filter index.
///<
const fptype* ftp; ///< Fractional delay filter pointer.
///<
fptypeatom x; ///< Interpolation coefficient between delay filters.
///<
int SrcOffs; ///< Source scanline offset.
///<
};
/**
* @brief Resizing positions buffer class.
*
* This class combines buffer together with variables that define resizing
* stepping.
*/
class CRPosBuf : public CBuffer< CResizePos >
{
public:
double k; ///< Resizing step.
///<
double o; ///< Resizing offset.
///<
int FracCount; ///< The number of fractional delay filters in a filter
///< bank used together with this buffer.
///<
};
/**
* @brief Resizing positions buffer array class.
*
* This class combines structure array of the CRPosBuf class objects with
* the function that locates or creates buffer with the required resizing
* stepping.
*/
class CRPosBufArray : public CStructArray< CRPosBuf >
{
public:
using CStructArray< CRPosBuf > :: add;
using CStructArray< CRPosBuf > :: getItemCount;
/**
* Function returns the resizing positions buffer with the required
* stepping. If no such buffer exists, it is created.
*
* @param k Resizing step.
* @param o Resizing offset.
* @param FracCount The number of fractional delay filters in a filter
* bank used together with this buffer.
* @return Reference to the CRPosBuf object.
*/
CRPosBuf& getRPosBuf( const double k, const double o,
const int FracCount )
{
int i;
for( i = 0; i < getItemCount(); i++ )
{
CRPosBuf& Buf = (*this)[ i ];
if( Buf.k == k && Buf.o == o && Buf.FracCount == FracCount )
{
return( Buf );
}
}
CRPosBuf& NewBuf = add();
NewBuf.k = k;
NewBuf.o = o;
NewBuf.FracCount = FracCount;
return( NewBuf );
}
};
CRPosBuf* RPosBuf; ///< Resizing positions buffer. Used when
///< ResampleFactor equals 0 (resizing step).
///<
CDSPFracFilterBankLin< fptype >* FltBank; ///< Filter bank in use by *this
///< resizing step.
///<
};
/**
* @brief Interleaved filtering steps implementation class.
*
* This class implements scanline filtering functions in interleaved mode.
* This means that each pixel is processed independently, not in groups.
*
* @tparam fptype Floating point type to use for storing pixel elements. SIMD
* types can be used: in this case each element may hold a whole pixel.
* @tparam fptypeatom The atomic type the "fptype" consists of.
*/
template< class fptype, class fptypeatom >
class CImageResizerFilterStepINL :
public CImageResizerFilterStep< fptype, fptypeatom >
{
public:
using CImageResizerFilterStep< fptype, fptypeatom > :: IsUpsample;
using CImageResizerFilterStep< fptype, fptypeatom > :: ResampleFactor;
using CImageResizerFilterStep< fptype, fptypeatom > :: Flt;
using CImageResizerFilterStep< fptype, fptypeatom > :: FltOrig;
using CImageResizerFilterStep< fptype, fptypeatom > :: FltLatency;
using CImageResizerFilterStep< fptype, fptypeatom > :: Vars;
using CImageResizerFilterStep< fptype, fptypeatom > :: InLen;
using CImageResizerFilterStep< fptype, fptypeatom > :: InPrefix;
using CImageResizerFilterStep< fptype, fptypeatom > :: InSuffix;
using CImageResizerFilterStep< fptype, fptypeatom > :: OutLen;
using CImageResizerFilterStep< fptype, fptypeatom > :: OutPrefix;
using CImageResizerFilterStep< fptype, fptypeatom > :: OutSuffix;
using CImageResizerFilterStep< fptype, fptypeatom > :: PrefixDC;
using CImageResizerFilterStep< fptype, fptypeatom > :: SuffixDC;
using CImageResizerFilterStep< fptype, fptypeatom > :: RPosBuf;
using CImageResizerFilterStep< fptype, fptypeatom > :: FltBank;
using CImageResizerFilterStep< fptype, fptypeatom > :: EdgePixelCount;
/**
* Function performs "packing" of a scanline and type conversion.
* Scanline, depending on the "fptype" can be potentially stored as a
* packed SIMD values having a certain atomic type. If required, the sRGB
* gamma correction is applied.
*
* @param ip Input scanline.
* @param op0 Output scanline.
* @param l0 The number of pixels to "pack".
*/
template< class Tin >
void packScanline( const Tin* ip, fptype* const op0, const int l0 ) const
{
const int ElCount = Vars -> ElCount;
const int ElCountIO = Vars -> ElCountIO;
fptype* op = op0;
int l = l0;
if( !Vars -> UseSRGBGamma )
{
if( ElCountIO == 1 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) op;
v[ 0 ] = (fptypeatom) ip[ 0 ];
op += ElCount;
ip++;
l--;
}
}
else
if( ElCountIO == 4 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) op;
v[ 0 ] = (fptypeatom) ip[ 0 ];
v[ 1 ] = (fptypeatom) ip[ 1 ];
v[ 2 ] = (fptypeatom) ip[ 2 ];
v[ 3 ] = (fptypeatom) ip[ 3 ];
op += ElCount;
ip += 4;
l--;
}
}
else
if( ElCountIO == 3 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) op;
v[ 0 ] = (fptypeatom) ip[ 0 ];
v[ 1 ] = (fptypeatom) ip[ 1 ];
v[ 2 ] = (fptypeatom) ip[ 2 ];
op += ElCount;
ip += 3;
l--;
}
}
else
if( ElCountIO == 2 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) op;
v[ 0 ] = (fptypeatom) ip[ 0 ];
v[ 1 ] = (fptypeatom) ip[ 1 ];
op += ElCount;
ip += 2;
l--;
}
}
}
else
{
const fptypeatom gm = (fptypeatom) Vars -> InGammaMult;
if( ElCountIO == 1 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) op;
v[ 0 ] = convertSRGB2Lin( (fptypeatom) ip[ 0 ] * gm );
op += ElCount;
ip++;
l--;
}
}
else
if( ElCountIO == 4 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) op;
v[ 0 ] = convertSRGB2Lin( (fptypeatom) ip[ 0 ] * gm );
v[ 1 ] = convertSRGB2Lin( (fptypeatom) ip[ 1 ] * gm );
v[ 2 ] = convertSRGB2Lin( (fptypeatom) ip[ 2 ] * gm );
v[ 3 ] = convertSRGB2Lin( (fptypeatom) ip[ 3 ] * gm );
op += ElCount;
ip += 4;
l--;
}
}
else
if( ElCountIO == 3 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) op;
v[ 0 ] = convertSRGB2Lin( (fptypeatom) ip[ 0 ] * gm );
v[ 1 ] = convertSRGB2Lin( (fptypeatom) ip[ 1 ] * gm );
v[ 2 ] = convertSRGB2Lin( (fptypeatom) ip[ 2 ] * gm );
op += ElCount;
ip += 3;
l--;
}
}
else
if( ElCountIO == 2 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) op;
v[ 0 ] = convertSRGB2Lin( (fptypeatom) ip[ 0 ] * gm );
v[ 1 ] = convertSRGB2Lin( (fptypeatom) ip[ 1 ] * gm );
op += ElCount;
ip += 2;
l--;
}
}
}
const int ZeroCount = ElCount * Vars -> fppack - ElCountIO;
op = op0;
l = l0;
if( ZeroCount == 1 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) op + ElCountIO;
v[ 0 ] = (fptypeatom) 0;
op += ElCount;
l--;
}
}
else
if( ZeroCount == 2 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) op + ElCountIO;
v[ 0 ] = (fptypeatom) 0;
v[ 1 ] = (fptypeatom) 0;
op += ElCount;
l--;
}
}
else
if( ZeroCount == 3 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) op + ElCountIO;
v[ 0 ] = (fptypeatom) 0;
v[ 1 ] = (fptypeatom) 0;
v[ 2 ] = (fptypeatom) 0;
op += ElCount;
l--;
}
}
}
/**
* Function applies Linear to sRGB gamma correction to the specified
* scanline.
*
* @param p Scanline.
* @param l The number of pixels to de-linearize.
* @param Vars0 Image resizing-related variables.
*/
static void applySRGBGamma( fptype* p, int l,
const CImageResizerVars& Vars0 )
{
const int ElCount = Vars0.ElCount;
const int ElCountIO = Vars0.ElCountIO;
const fptypeatom gm = (fptypeatom) Vars0.OutGammaMult;
if( ElCountIO == 1 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) p;
v[ 0 ] = convertLin2SRGB( v[ 0 ]) * gm;
p += ElCount;
l--;
}
}
else
if( ElCountIO == 4 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) p;
v[ 0 ] = convertLin2SRGB( v[ 0 ]) * gm;
v[ 1 ] = convertLin2SRGB( v[ 1 ]) * gm;
v[ 2 ] = convertLin2SRGB( v[ 2 ]) * gm;
v[ 3 ] = convertLin2SRGB( v[ 3 ]) * gm;
p += ElCount;
l--;
}
}
else
if( ElCountIO == 3 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) p;
v[ 0 ] = convertLin2SRGB( v[ 0 ]) * gm;
v[ 1 ] = convertLin2SRGB( v[ 1 ]) * gm;
v[ 2 ] = convertLin2SRGB( v[ 2 ]) * gm;
p += ElCount;
l--;
}
}
else
if( ElCountIO == 2 )
{
while( l > 0 )
{
fptypeatom* v = (fptypeatom*) p;
v[ 0 ] = convertLin2SRGB( v[ 0 ]) * gm;
v[ 1 ] = convertLin2SRGB( v[ 1 ]) * gm;
p += ElCount;
l--;
}
}
}
/**
* Function converts vertical scanline to horizontal scanline. This
* function is called by the image resizer when image is resized
* vertically. This means that the vertical scanline is stored in the
* same format produced by the packScanline() and maintained by other
* filtering functions.
*
* @param ip Input vertical scanline.
* @param op Output buffer (temporary buffer used during resizing).
* @param SrcLen The number of pixels in the input scanline, also used to
* calculate input buffer increment.
* @param SrcIncr Input buffer increment to the next vertical pixel.
*/
void convertVtoH( const fptype* ip, fptype* op, const int SrcLen,
const int SrcIncr ) const
{
const int ElCount = Vars -> ElCount;
int j;
if( ElCount == 1 )
{
for( j = 0; j < SrcLen; j++ )
{
op[ 0 ] = ip[ 0 ];
ip += SrcIncr;
op++;
}
}
else
if( ElCount == 4 )
{
for( j = 0; j < SrcLen; j++ )
{
op[ 0 ] = ip[ 0 ];
op[ 1 ] = ip[ 1 ];
op[ 2 ] = ip[ 2 ];
op[ 3 ] = ip[ 3 ];
ip += SrcIncr;
op += 4;
}
}
else
if( ElCount == 3 )
{
for( j = 0; j < SrcLen; j++ )
{
op[ 0 ] = ip[ 0 ];
op[ 1 ] = ip[ 1 ];
op[ 2 ] = ip[ 2 ];
ip += SrcIncr;
op += 3;
}
}
else
if( ElCount == 2 )
{
for( j = 0; j < SrcLen; j++ )
{
op[ 0 ] = ip[ 0 ];
op[ 1 ] = ip[ 1 ];
ip += SrcIncr;
op += 2;
}
}
}
/**
* Function performs "unpacking" of a scanline and type conversion
* (truncation is used when floating point is converted to integer).
* Scanline, depending on the "fptype" can be potentially stored as a
* packed SIMD values having a certain atomic type. The unpacking function
* assumes that scanline is stored in the style produced by the
* packScanline() function.
*
* @param ip Input scanline.
* @param op Output scanline.
* @param l The number of pixels to "unpack".
* @param Vars0 Image resizing-related variables.
*/
template< class Tout >
static void unpackScanline( const fptype* ip, Tout* op, int l,
const CImageResizerVars& Vars0 )
{
const int ElCount = Vars0.ElCount;
const int ElCountIO = Vars0.ElCountIO;
if( ElCountIO == 1 )
{
while( l > 0 )
{
const fptypeatom* v = (const fptypeatom*) ip;
op[ 0 ] = (Tout) v[ 0 ];
ip += ElCount;
op++;
l--;
}
}
else
if( ElCountIO == 4 )
{
while( l > 0 )
{
const fptypeatom* v = (const fptypeatom*) ip;
op[ 0 ] = (Tout) v[ 0 ];
op[ 1 ] = (Tout) v[ 1 ];
op[ 2 ] = (Tout) v[ 2 ];
op[ 3 ] = (Tout) v[ 3 ];
ip += ElCount;
op += 4;
l--;
}
}
else
if( ElCountIO == 3 )
{
while( l > 0 )
{
const fptypeatom* v = (const fptypeatom*) ip;
op[ 0 ] = (Tout) v[ 0 ];
op[ 1 ] = (Tout) v[ 1 ];
op[ 2 ] = (Tout) v[ 2 ];
ip += ElCount;
op += 3;
l--;
}
}
else
if( ElCountIO == 2 )
{
while( l > 0 )
{
const fptypeatom* v = (const fptypeatom*) ip;
op[ 0 ] = (Tout) v[ 0 ];
op[ 1 ] = (Tout) v[ 1 ];
ip += ElCount;
op += 2;
l--;
}
}
}
/**
* Function prepares input scanline buffer for *this filtering step.
* Left- and right-most pixels are replicated to make sure no buffer
* overrun happens. Such approach also allows to bypass any pointer
* range checks.
*
* @param Src Source buffer.
*/
void prepareInBuf( fptype* Src ) const
{
if( IsUpsample || InPrefix + InSuffix == 0 )
{
return;
}
const int ElCount = Vars -> ElCount;
replicateArray( Src, ElCount, Src - ElCount, InPrefix, -ElCount );
Src += ( InLen - 1 ) * ElCount;
replicateArray( Src, ElCount, Src + ElCount, InSuffix, ElCount );
}
/**
* Function peforms scanline upsampling with filtering.
*
* @param Src Source scanline buffer (length = this -> InLen). Source
* scanline increment will be equal to ElCount.
* @param Dst Destination scanline buffer.
*/
void doUpsample( const fptype* const Src, fptype* const Dst ) const
{
const int ElCount = Vars -> ElCount;
fptype* op0 = &Dst[ -OutPrefix * ElCount ];
memset( op0, 0, ( OutPrefix + OutLen + OutSuffix ) * ElCount *
sizeof( fptype ));
const fptype* ip = Src;
const int opstep = ElCount * ResampleFactor;
int l;
if( FltOrig.getCapacity() > 0 )
{
// Do not perform filtering, only upsample.
op0 += ( OutPrefix % ResampleFactor ) * ElCount;
l = OutPrefix / ResampleFactor;
if( ElCount == 1 )
{
while( l > 0 )
{
op0[ 0 ] = ip[ 0 ];
op0 += opstep;
l--;
}
l = InLen - 1;
while( l > 0 )
{
op0[ 0 ] = ip[ 0 ];
op0 += opstep;
ip += ElCount;
l--;
}
l = OutSuffix / ResampleFactor;
while( l >= 0 )
{
op0[ 0 ] = ip[ 0 ];
op0 += opstep;
l--;
}
}
else
if( ElCount == 4 )
{
while( l > 0 )
{
op0[ 0 ] = ip[ 0 ];
op0[ 1 ] = ip[ 1 ];
op0[ 2 ] = ip[ 2 ];
op0[ 3 ] = ip[ 3 ];
op0 += opstep;
l--;
}
l = InLen - 1;
while( l > 0 )
{
op0[ 0 ] = ip[ 0 ];
op0[ 1 ] = ip[ 1 ];
op0[ 2 ] = ip[ 2 ];
op0[ 3 ] = ip[ 3 ];
op0 += opstep;
ip += ElCount;
l--;
}
l = OutSuffix / ResampleFactor;
while( l >= 0 )
{
op0[ 0 ] = ip[ 0 ];
op0[ 1 ] = ip[ 1 ];
op0[ 2 ] = ip[ 2 ];
op0[ 3 ] = ip[ 3 ];
op0 += opstep;
l--;
}
}
else
if( ElCount == 3 )
{
while( l > 0 )
{
op0[ 0 ] = ip[ 0 ];
op0[ 1 ] = ip[ 1 ];
op0[ 2 ] = ip[ 2 ];
op0 += opstep;
l--;
}
l = InLen - 1;
while( l > 0 )
{
op0[ 0 ] = ip[ 0 ];
op0[ 1 ] = ip[ 1 ];
op0[ 2 ] = ip[ 2 ];
op0 += opstep;
ip += ElCount;
l--;
}
l = OutSuffix / ResampleFactor;
while( l >= 0 )
{
op0[ 0 ] = ip[ 0 ];
op0[ 1 ] = ip[ 1 ];
op0[ 2 ] = ip[ 2 ];
op0 += opstep;
l--;
}
}
else
if( ElCount == 2 )
{
while( l > 0 )
{
op0[ 0 ] = ip[ 0 ];
op0[ 1 ] = ip[ 1 ];
op0 += opstep;
l--;
}
l = InLen - 1;
while( l > 0 )
{
op0[ 0 ] = ip[ 0 ];
op0[ 1 ] = ip[ 1 ];
op0 += opstep;
ip += ElCount;
l--;
}
l = OutSuffix / ResampleFactor;
while( l >= 0 )
{
op0[ 0 ] = ip[ 0 ];
op0[ 1 ] = ip[ 1 ];
op0 += opstep;
l--;
}
}
return;
}
const fptype* const f = Flt;
const int flen = Flt.getCapacity();
fptype* op;
int i;
if( ElCount == 1 )
{
l = InPrefix;
while( l > 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ i ] += f[ i ] * ip[ 0 ];
}
op0 += opstep;
l--;
}
l = InLen - 1;
while( l > 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ i ] += f[ i ] * ip[ 0 ];
}
ip += ElCount;
op0 += opstep;
l--;
}
l = InSuffix;
while( l >= 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ i ] += f[ i ] * ip[ 0 ];
}
op0 += opstep;
l--;
}
}
else
if( ElCount == 4 )
{
l = InPrefix;
while( l > 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ 0 ] += f[ i ] * ip[ 0 ];
op[ 1 ] += f[ i ] * ip[ 1 ];
op[ 2 ] += f[ i ] * ip[ 2 ];
op[ 3 ] += f[ i ] * ip[ 3 ];
op += 4;
}
op0 += opstep;
l--;
}
l = InLen - 1;
while( l > 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ 0 ] += f[ i ] * ip[ 0 ];
op[ 1 ] += f[ i ] * ip[ 1 ];
op[ 2 ] += f[ i ] * ip[ 2 ];
op[ 3 ] += f[ i ] * ip[ 3 ];
op += 4;
}
ip += ElCount;
op0 += opstep;
l--;
}
l = InSuffix;
while( l >= 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ 0 ] += f[ i ] * ip[ 0 ];
op[ 1 ] += f[ i ] * ip[ 1 ];
op[ 2 ] += f[ i ] * ip[ 2 ];
op[ 3 ] += f[ i ] * ip[ 3 ];
op += 4;
}
op0 += opstep;
l--;
}
}
else
if( ElCount == 3 )
{
l = InPrefix;
while( l > 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ 0 ] += f[ i ] * ip[ 0 ];
op[ 1 ] += f[ i ] * ip[ 1 ];
op[ 2 ] += f[ i ] * ip[ 2 ];
op += 3;
}
op0 += opstep;
l--;
}
l = InLen - 1;
while( l > 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ 0 ] += f[ i ] * ip[ 0 ];
op[ 1 ] += f[ i ] * ip[ 1 ];
op[ 2 ] += f[ i ] * ip[ 2 ];
op += 3;
}
ip += ElCount;
op0 += opstep;
l--;
}
l = InSuffix;
while( l >= 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ 0 ] += f[ i ] * ip[ 0 ];
op[ 1 ] += f[ i ] * ip[ 1 ];
op[ 2 ] += f[ i ] * ip[ 2 ];
op += 3;
}
op0 += opstep;
l--;
}
}
else
if( ElCount == 2 )
{
l = InPrefix;
while( l > 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ 0 ] += f[ i ] * ip[ 0 ];
op[ 1 ] += f[ i ] * ip[ 1 ];
op += 2;
}
op0 += opstep;
l--;
}
l = InLen - 1;
while( l > 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ 0 ] += f[ i ] * ip[ 0 ];
op[ 1 ] += f[ i ] * ip[ 1 ];
op += 2;
}
ip += ElCount;
op0 += opstep;
l--;
}
l = InSuffix;
while( l >= 0 )
{
op = op0;
for( i = 0; i < flen; i++ )
{
op[ 0 ] += f[ i ] * ip[ 0 ];
op[ 1 ] += f[ i ] * ip[ 1 ];
op += 2;
}
op0 += opstep;
l--;
}
}
op = op0;
const fptype* dc = SuffixDC;
l = SuffixDC.getCapacity();
if( ElCount == 1 )
{
for( i = 0; i < l; i++ )
{
op[ i ] += ip[ 0 ] * dc[ i ];
}
}
else
if( ElCount == 4 )
{
while( l > 0 )
{
op[ 0 ] += ip[ 0 ] * dc[ 0 ];
op[ 1 ] += ip[ 1 ] * dc[ 0 ];
op[ 2 ] += ip[ 2 ] * dc[ 0 ];
op[ 3 ] += ip[ 3 ] * dc[ 0 ];
dc++;
op += 4;
l--;
}
}
else
if( ElCount == 3 )
{
while( l > 0 )
{
op[ 0 ] += ip[ 0 ] * dc[ 0 ];
op[ 1 ] += ip[ 1 ] * dc[ 0 ];
op[ 2 ] += ip[ 2 ] * dc[ 0 ];
dc++;
op += 3;
l--;
}
}
else
if( ElCount == 2 )
{
while( l > 0 )
{
op[ 0 ] += ip[ 0 ] * dc[ 0 ];
op[ 1 ] += ip[ 1 ] * dc[ 0 ];
dc++;
op += 2;
l--;
}
}
ip = Src;
op = Dst - InPrefix * opstep;
dc = PrefixDC;
l = PrefixDC.getCapacity();
if( ElCount == 1 )
{
for( i = 0; i < l; i++ )
{
op[ i ] += ip[ 0 ] * dc[ i ];
}
}
else
if( ElCount == 4 )
{
while( l > 0 )
{
op[ 0 ] += ip[ 0 ] * dc[ 0 ];
op[ 1 ] += ip[ 1 ] * dc[ 0 ];
op[ 2 ] += ip[ 2 ] * dc[ 0 ];
op[ 3 ] += ip[ 3 ] * dc[ 0 ];
dc++;
op += 4;
l--;
}
}
else
if( ElCount == 3 )
{
while( l > 0 )
{
op[ 0 ] += ip[ 0 ] * dc[ 0 ];
op[ 1 ] += ip[ 1 ] * dc[ 0 ];
op[ 2 ] += ip[ 2 ] * dc[ 0 ];
dc++;
op += 3;
l--;
}
}
else
if( ElCount == 2 )
{
while( l > 0 )
{
op[ 0 ] += ip[ 0 ] * dc[ 0 ];
op[ 1 ] += ip[ 1 ] * dc[ 0 ];
dc++;
op += 2;
l--;
}
}
}
/**
* Function peforms scanline filtering with optional downsampling.
* Function makes use of the symmetry of the filter.
*
* @param Src Source scanline buffer (length = this -> InLen). Source
* scanline increment will be equal to ElCount.
* @param Dst Destination scanline buffer.
* @param DstIncr Destination scanline buffer increment, used for
* horizontal or vertical scanline stepping.
*/
void doFilter( const fptype* const Src, fptype* Dst,
const int DstIncr ) const
{
const int ElCount = Vars -> ElCount;
const fptype* const f = &Flt[ FltLatency ];
const int flen = FltLatency + 1;
const int ipstep = ElCount * ResampleFactor;
const fptype* ip = Src - EdgePixelCount * ipstep;
const fptype* ip1;
const fptype* ip2;
int l = OutLen;
int i;
if( ElCount == 1 )
{
while( l > 0 )
{
fptype s = f[ 0 ] * ip[ 0 ];
ip1 = ip;
ip2 = ip;
for( i = 1; i < flen; i++ )
{
ip1++;
ip2--;
s += f[ i ] * ( ip1[ 0 ] + ip2[ 0 ]);
}
Dst[ 0 ] = s;
Dst += DstIncr;
ip += ipstep;
l--;
}
}
else
if( ElCount == 4 )
{
while( l > 0 )
{
fptype s1 = f[ 0 ] * ip[ 0 ];
fptype s2 = f[ 0 ] * ip[ 1 ];
fptype s3 = f[ 0 ] * ip[ 2 ];
fptype s4 = f[ 0 ] * ip[ 3 ];
ip1 = ip;
ip2 = ip;
for( i = 1; i < flen; i++ )
{
ip1 += 4;
ip2 -= 4;
s1 += f[ i ] * ( ip1[ 0 ] + ip2[ 0 ]);
s2 += f[ i ] * ( ip1[ 1 ] + ip2[ 1 ]);
s3 += f[ i ] * ( ip1[ 2 ] + ip2[ 2 ]);
s4 += f[ i ] * ( ip1[ 3 ] + ip2[ 3 ]);
}
Dst[ 0 ] = s1;
Dst[ 1 ] = s2;
Dst[ 2 ] = s3;
Dst[ 3 ] = s4;
Dst += DstIncr;
ip += ipstep;
l--;
}
}
else
if( ElCount == 3 )
{
while( l > 0 )
{
fptype s1 = f[ 0 ] * ip[ 0 ];
fptype s2 = f[ 0 ] * ip[ 1 ];
fptype s3 = f[ 0 ] * ip[ 2 ];
ip1 = ip;
ip2 = ip;
for( i = 1; i < flen; i++ )
{
ip1 += 3;
ip2 -= 3;
s1 += f[ i ] * ( ip1[ 0 ] + ip2[ 0 ]);
s2 += f[ i ] * ( ip1[ 1 ] + ip2[ 1 ]);
s3 += f[ i ] * ( ip1[ 2 ] + ip2[ 2 ]);
}
Dst[ 0 ] = s1;
Dst[ 1 ] = s2;
Dst[ 2 ] = s3;
Dst += DstIncr;
ip += ipstep;
l--;
}
}
else
if( ElCount == 2 )
{
while( l > 0 )
{
fptype s1 = f[ 0 ] * ip[ 0 ];
fptype s2 = f[ 0 ] * ip[ 1 ];
ip1 = ip;
ip2 = ip;
for( i = 1; i < flen; i++ )
{
ip1 += 2;
ip2 -= 2;
s1 += f[ i ] * ( ip1[ 0 ] + ip2[ 0 ]);
s2 += f[ i ] * ( ip1[ 1 ] + ip2[ 1 ]);
}
Dst[ 0 ] = s1;
Dst[ 1 ] = s2;
Dst += DstIncr;
ip += ipstep;
l--;
}
}
}
/**
* Function performs resizing of a single scanline. This function does
* not "know" about the length of the source scanline buffer. This buffer
* should be padded with enough pixels so that ( SrcPos - FilterLenD2 ) is
* always >= 0 and ( SrcPos + ( DstLineLen - 1 ) * k + FilterLenD2 + 1 )
* does not exceed source scanline's buffer length. SrcLine's increment is
* assumed to be equal to ElCount.
*
* @param SrcLine Source scanline buffer.
* @param DstLine Destination (resized) scanline buffer.
* @param DstLineIncr Destination scanline position increment, used for
* horizontal or vertical scanline stepping.
* @param xx Temporary buffer, of size FltBank -> getFilterLen(), must be
* aligned by fpclass :: fpalign.
*/
void doResize( const fptype* SrcLine, fptype* DstLine,
const int DstLineIncr, fptype* const ) const
{
const int IntFltLen = FltBank -> getFilterLen();
const int ElCount = Vars -> ElCount;
const typename CImageResizerFilterStep< fptype, fptypeatom > ::
CResizePos* rpos = &(*RPosBuf)[ 0 ];
const typename CImageResizerFilterStep< fptype, fptypeatom > ::
CResizePos* const rpose = rpos + OutLen;
#define AVIR_RESIZE_PART1 \
while( rpos < rpose ) \
{ \
const fptype x = (fptype) rpos -> x; \
const fptype* const ftp = rpos -> ftp; \
const fptype* const ftp2 = ftp + IntFltLen; \
const fptype* Src = SrcLine + rpos -> SrcOffs; \
int i;
#define AVIR_RESIZE_PART1nx \
while( rpos < rpose ) \
{ \
const fptype* const ftp = rpos -> ftp; \
const fptype* Src = SrcLine + rpos -> SrcOffs; \
int i;
#define AVIR_RESIZE_PART2 \
DstLine += DstLineIncr; \
rpos++; \
}
if( FltBank -> getOrder() == 1 )
{
if( ElCount == 1 )
{
AVIR_RESIZE_PART1
fptype sum = 0.0;
for( i = 0; i < IntFltLen; i++ )
{
sum += ( ftp[ i ] + ftp2[ i ] * x ) * Src[ i ];
}
DstLine[ 0 ] = sum;
AVIR_RESIZE_PART2
}
else
if( ElCount == 4 )
{
AVIR_RESIZE_PART1
fptype sum[ 4 ];
sum[ 0 ] = 0.0;
sum[ 1 ] = 0.0;
sum[ 2 ] = 0.0;
sum[ 3 ] = 0.0;
for( i = 0; i < IntFltLen; i++ )
{
const fptype xx = ftp[ i ] + ftp2[ i ] * x;
sum[ 0 ] += xx * Src[ 0 ];
sum[ 1 ] += xx * Src[ 1 ];
sum[ 2 ] += xx * Src[ 2 ];
sum[ 3 ] += xx * Src[ 3 ];
Src += 4;
}
DstLine[ 0 ] = sum[ 0 ];
DstLine[ 1 ] = sum[ 1 ];
DstLine[ 2 ] = sum[ 2 ];
DstLine[ 3 ] = sum[ 3 ];
AVIR_RESIZE_PART2
}
else
if( ElCount == 3 )
{
AVIR_RESIZE_PART1
fptype sum[ 3 ];
sum[ 0 ] = 0.0;
sum[ 1 ] = 0.0;
sum[ 2 ] = 0.0;
for( i = 0; i < IntFltLen; i++ )
{
const fptype xx = ftp[ i ] + ftp2[ i ] * x;
sum[ 0 ] += xx * Src[ 0 ];
sum[ 1 ] += xx * Src[ 1 ];
sum[ 2 ] += xx * Src[ 2 ];
Src += 3;
}
DstLine[ 0 ] = sum[ 0 ];
DstLine[ 1 ] = sum[ 1 ];
DstLine[ 2 ] = sum[ 2 ];
AVIR_RESIZE_PART2
}
else
if( ElCount == 2 )
{
AVIR_RESIZE_PART1
fptype sum[ 2 ];
sum[ 0 ] = 0.0;
sum[ 1 ] = 0.0;
for( i = 0; i < IntFltLen; i++ )
{
const fptype xx = ftp[ i ] + ftp2[ i ] * x;
sum[ 0 ] += xx * Src[ 0 ];
sum[ 1 ] += xx * Src[ 1 ];
Src += 2;
}
DstLine[ 0 ] = sum[ 0 ];
DstLine[ 1 ] = sum[ 1 ];
AVIR_RESIZE_PART2
}
}
else
{
if( ElCount == 1 )
{
AVIR_RESIZE_PART1nx
fptype sum = 0.0;
for( i = 0; i < IntFltLen; i++ )
{
sum += ftp[ i ] * Src[ i ];
}
DstLine[ 0 ] = sum;
AVIR_RESIZE_PART2
}
else
if( ElCount == 4 )
{
AVIR_RESIZE_PART1nx
fptype sum[ 4 ];
sum[ 0 ] = 0.0;
sum[ 1 ] = 0.0;
sum[ 2 ] = 0.0;
sum[ 3 ] = 0.0;
for( i = 0; i < IntFltLen; i++ )
{
const fptype xx = ftp[ i ];
sum[ 0 ] += xx * Src[ 0 ];
sum[ 1 ] += xx * Src[ 1 ];
sum[ 2 ] += xx * Src[ 2 ];
sum[ 3 ] += xx * Src[ 3 ];
Src += 4;
}
DstLine[ 0 ] = sum[ 0 ];
DstLine[ 1 ] = sum[ 1 ];
DstLine[ 2 ] = sum[ 2 ];
DstLine[ 3 ] = sum[ 3 ];
AVIR_RESIZE_PART2
}
else
if( ElCount == 3 )
{
AVIR_RESIZE_PART1nx
fptype sum[ 3 ];
sum[ 0 ] = 0.0;
sum[ 1 ] = 0.0;
sum[ 2 ] = 0.0;
for( i = 0; i < IntFltLen; i++ )
{
const fptype xx = ftp[ i ];
sum[ 0 ] += xx * Src[ 0 ];
sum[ 1 ] += xx * Src[ 1 ];
sum[ 2 ] += xx * Src[ 2 ];
Src += 3;
}
DstLine[ 0 ] = sum[ 0 ];
DstLine[ 1 ] = sum[ 1 ];
DstLine[ 2 ] = sum[ 2 ];
AVIR_RESIZE_PART2
}
else
if( ElCount == 2 )
{
AVIR_RESIZE_PART1nx
fptype sum[ 2 ];
sum[ 0 ] = 0.0;
sum[ 1 ] = 0.0;
for( i = 0; i < IntFltLen; i++ )
{
const fptype xx = ftp[ i ];
sum[ 0 ] += xx * Src[ 0 ];
sum[ 1 ] += xx * Src[ 1 ];
Src += 2;
}
DstLine[ 0 ] = sum[ 0 ];
DstLine[ 1 ] = sum[ 1 ];
AVIR_RESIZE_PART2
}
}
}
#undef AVIR_RESIZE_PART2
#undef AVIR_RESIZE_PART1nx
#undef AVIR_RESIZE_PART1
};
/**
* @brief Image resizer's default dithering class.
*
* This class defines an object that performs rounding, clipping and dithering
* operations over horizontal scanline pixels before scanline is stored in the
* output buffer.
*
* The ditherer should expect the same storage order of the pixels in a
* scanline as used in the "filtering step" class. So, a separate ditherer
* class should be defined for each scanline pixel storage style. The default
* ditherer implements a simple rounding without dithering: it can be used for
* an efficient dithering method which can be multi-threaded.
*
* @tparam fptype Floating point type to use for storing pixel data. SIMD
* types can be used.
*/
template< class fptype >
class CImageResizerDithererDefINL
{
public:
/**
* Function initializes the ditherer object.
*
* @param aLen Scanline length in pixels to process.
* @param aVars Image resizing-related variables.
* @param aTrMul Bit-depth truncation multiplier. 1 - no additional
* truncation.
* @param aPkOut Peak output value allowed.
*/
void init( const int aLen, const CImageResizerVars& aVars,
const double aTrMul, const double aPkOut )
{
Len = aLen;
Vars = &aVars;
LenE = aLen * Vars -> ElCount;
TrMul0 = aTrMul;
PkOut0 = aPkOut;
}
/**
* @return "True" if dithering is recursive relative to scanlines meaning
* multi-threaded execution is not supported by this dithering method.
*/
static bool isRecursive()
{
return( false );
}
/**
* Function performs rounding and clipping operations.
*
* @param ResScanline The buffer containing the final scanline.
*/
void dither( fptype* const ResScanline ) const
{
const fptype c0 = 0.0;
const fptype PkOut = (fptype) PkOut0;
int j;
if( TrMul0 == 1.0 )
{
// Optimization - do not perform bit depth truncation.
for( j = 0; j < LenE; j++ )
{
ResScanline[ j ] = clamp( round( ResScanline[ j ]), c0,
PkOut );
}
}
else
{
const fptype TrMul = (fptype) TrMul0;
for( j = 0; j < LenE; j++ )
{
const fptype z0 = round( ResScanline[ j ] / TrMul ) * TrMul;
ResScanline[ j ] = clamp( z0, c0, PkOut );
}
}
}
protected:
int Len; ///< Scanline's length in pixels.
///<
const CImageResizerVars* Vars; ///< Image resizing-related variables.
///<
int LenE; ///< = LenE * ElCount.
///<
double TrMul0; ///< Bit-depth truncation multiplier.
///<
double PkOut0; ///< Peak output value allowed.
///<
};
/**
* @brief Image resizer's error-diffusion dithering class, interleaved mode.
*
* This ditherer implements error-diffusion dithering which looks good, and
* whose results are compressed by PNG well. This implementation uses
* weighting coefficients obtained via machine optimization and visual
* evaluation.
*
* @tparam fptype Floating point type to use for storing pixel data. SIMD
* types can be used.
*/
template< class fptype >
class CImageResizerDithererErrdINL :
public CImageResizerDithererDefINL< fptype >
{
public:
/**
* Function initializes the ditherer object.
*
* @param aLen Scanline length in pixels to process.
* @param aVars Image resizing-related variables.
* @param aTrMul Bit-depth truncation multiplier. 1 - no additional
* truncation.
* @param aPkOut Peak output value allowed.
*/
void init( const int aLen, const CImageResizerVars& aVars,
const double aTrMul, const double aPkOut )
{
CImageResizerDithererDefINL< fptype > :: init( aLen, aVars, aTrMul,
aPkOut );
ResScanlineDith0.alloc( LenE + Vars -> ElCount, sizeof( fptype ));
ResScanlineDith = ResScanlineDith0 + Vars -> ElCount;
int i;
for( i = 0; i < LenE + Vars -> ElCount; i++ )
{
ResScanlineDith0[ i ] = 0.0;
}
}
static bool isRecursive()
{
return( true );
}
void dither( fptype* const ResScanline )
{
const int ElCount = Vars -> ElCount;
const fptype c0 = 0.0;
const fptype TrMul = (fptype) TrMul0;
const fptype PkOut = (fptype) PkOut0;
int j;
for( j = 0; j < LenE; j++ )
{
ResScanline[ j ] += ResScanlineDith[ j ];
ResScanlineDith[ j ] = 0.0;
}
for( j = 0; j < LenE - ElCount; j++ )
{
// Perform rounding, noise estimation and saturation.
const fptype z0 = round( ResScanline[ j ] / TrMul ) * TrMul;
const fptype Noise = ResScanline[ j ] - z0;
ResScanline[ j ] = clamp( z0, c0, PkOut );
ResScanline[ j + ElCount ] += Noise * (fptype) 0.364842;
ResScanlineDith[ j - ElCount ] += Noise * (fptype) 0.207305;
ResScanlineDith[ j ] += Noise * (fptype) 0.364842;
ResScanlineDith[ j + ElCount ] += Noise * (fptype) 0.063011;
}
while( j < LenE )
{
const fptype z0 = round( ResScanline[ j ] / TrMul ) * TrMul;
const fptype Noise = ResScanline[ j ] - z0;
ResScanline[ j ] = clamp( z0, c0, PkOut );
ResScanlineDith[ j - ElCount ] += Noise * (fptype) 0.207305;
ResScanlineDith[ j ] += Noise * (fptype) 0.364842;
j++;
}
}
protected:
using CImageResizerDithererDefINL< fptype > :: Len;
using CImageResizerDithererDefINL< fptype > :: Vars;
using CImageResizerDithererDefINL< fptype > :: LenE;
using CImageResizerDithererDefINL< fptype > :: TrMul0;
using CImageResizerDithererDefINL< fptype > :: PkOut0;
CBuffer< fptype > ResScanlineDith0; ///< Error diffusion buffer.
///<
fptype* ResScanlineDith; ///< Error diffusion buffer pointer which skips
///< the first ElCount elements.
///<
};
/**
* @brief Floating-point processing definition and abstraction class.
*
* This class defines several constants and typedefs that point to classes
* that should be used by the image resizing algorithm. Such "definition
* class" can be used to define alternative scanline processing algorithms
* (e.g. SIMD) and image scanline packing styles used during processing. This
* class also offers an abstraction layer for dithering, rounding and
* clamping (saturation) operation.
*
* The fpclass_def class can be used to define processing using both SIMD and
* non-SIMD types, but using algorithms that are operate on interleaved pixels
* and non-SIMD optimized themselves.
*
* @tparam afptype Floating point type to use for storing intermediate data
* and variables. For variables that are not used in intensive calculations
* the "double" type is always used. On the latest Intel processors (like
* i7-4770K) there is almost no performance difference between "double" and
* "float". Image quality differences between "double" and "float" are not
* apparent on 8-bit images. At the same time the "float" uses half amount of
* working memory the "double" type uses. SIMD types can be used. The
* functions round() and clamp() in the "avir" or other visible namespace
* should be available for the specified type. SIMD types allow to perform
* resizing of images with more than 4 channels, to be exact 4 * SIMD element
* number (e.g. 16 for float4), without modification of the image resizing
* algorithm required.
* @tparam afptypeatom The atomic type the "afptype" consists of.
* @tparam adith Ditherer class to use during processing.
*/
template< class afptype, class afptypeatom = afptype,
class adith = CImageResizerDithererDefINL< afptype > >
class fpclass_def
{
public:
typedef afptype fptype; ///< Floating-point type to use during processing.
///<
typedef afptypeatom fptypeatom; ///< Atomic type "fptype" consists of.
///<
static const int fppack = sizeof( fptype ) / sizeof( fptypeatom ); ///<
///< The number of atomic types stored in a single "fptype" element.
///<
static const int fpalign = sizeof( fptype ); ///< Suggested alignment size
///< in bytes. This is not a required alignment, because image
///< resizing algorithm cannot be made to have a strictly aligned data
///< access at all steps (e.g. interpolation cannot perform aligned
///< accesses).
///<
static const int elalign = 1; ///< Length alignment of arrays of elements.
///< This applies to filters and intermediate buffers: this constant
///< forces filters and scanlines to have a length which is a multiple
///< of this value, for more efficient SIMD implementation.
///<
static const int packmode = 0; ///< 0 if interleaved packing, 1 if
///< de-interleaved.
///<
typedef CImageResizerFilterStepINL< fptype, fptypeatom > CFilterStep; ///<
///< Filtering step class to use during processing.
///<
typedef adith CDitherer; ///< Ditherer class to use during processing.
///<
};
/**
* @brief Image resizer class.
*
* The object of this class can be used to resize 1-4 channel images to any
* required size. Resizing is performed by utilizing interpolated sinc
* fractional delay filters plus (if necessary) a cascade of built-in
* sinc function-based 2X upsampling or 2X downsampling stages, followed by a
* correction filtering.
*
* Object of this class can be allocated on stack.
*
* @tparam fpclass Floating-point processing definition class to use. See
* avir::fpclass_def for more details.
*/
template< class fpclass = fpclass_def< float > >
class CImageResizer
{
public:
/**
* Constructor initializes the resizer.
*
* @param aResBitDepth Required bit depth of resulting image (1-16). If
* integer value output is used (e.g. uint8_t), the bit depth also affects
* rounding: for example, if aResBitDepth=6 and "Tout" is uint8_t, the
* result will be rounded to 6 most significant bits (2 least significant
* bits truncated, with dithering applied).
* @param aSrcBitDepth Source image's real bit-depth. Set to 0 to use
* aResBitDepth.
* @param aParams Resizing algorithm's parameters to use. Leave out for
* default values. Can be useful when performing automatic optimization of
* parameters.
*/
CImageResizer( const int aResBitDepth = 8, const int aSrcBitDepth = 0,
const CImageResizerParams& aParams = CImageResizerParamsDef() )
: Params( aParams )
, ResBitDepth( aResBitDepth )
{
SrcBitDepth = ( aSrcBitDepth == 0 ? ResBitDepth : aSrcBitDepth );
initFilterBank( FixedFilterBank, 1.0, false, CFltBuffer() );
FixedFilterBank.createAllFilters();
}
/**
* Function resizes image.
*
* @param SrcBuf Source image buffer.
* @param SrcWidth Source image width.
* @param SrcHeight Source image height.
* @param SrcScanlineSize Physical size of source scanline in elements
* (not bytes). If this value is below 1, SrcWidth * ElCountIO will be
* used as the physical source scanline size.
* @param[out] NewBuf Buffer to accept the resized image. Can be equal to
* SrcBuf if the size of the resized image is smaller or equal to source
* image in size.
* @param NewWidth New image width.
* @param NewHeight New image height.
* @param ElCountIO The number of elements (channels) used to store each
* source and destination pixel (1-4).
* @param k Resizing step (one output pixel corresponds to "k" input
* pixels). A downsizing factor if > 1.0; upsizing factor if <= 1.0.
* Multiply by -1 if you would like to bypass "ox" and "oy" adjustment
* which is done by default to produce a centered image. If step value
* equals 0, the step value will be chosen automatically and independently
* for horizontal and vertical resizing.
* @param[in,out] aVars Pointer to variables structure to be passed to the
* image resizing function. Can be NULL. Only variables that are
* initialized in default constructor of this structure are accepted by
* this function. These variables will not be changed by this function.
* All other variables can be modified by this function. The access to
* this object is not thread-safe, each concurrent instance of this
* function should use a separate aVars object.
* @tparam Tin Input buffer element's type. Can be uint8_t (0-255 value
* range), uint16_t (0-65535 value range), float (0.0-1.0 value range),
* double (0.0-1.0 value range). Larger integer types are treated as
* uint16_t. Signed integer types are unsupported.
* @tparam Tout Output buffer element's type. Can be uint8_t (0-255 value
* range), uint16_t (0-65535 value range), float (0.0-1.0 value range),
* double (0.0-1.0 value range). Larger integer types are treated as
* uint16_t. Signed integer types are unsupported.
*/
template< class Tin, class Tout >
void resizeImage( const Tin* const SrcBuf, const int SrcWidth,
const int SrcHeight, int SrcScanlineSize, Tout* const NewBuf,
const int NewWidth, const int NewHeight, const int ElCountIO,
const double k, CImageResizerVars* const aVars = nullptr ) const
{
if( SrcWidth == 0 || SrcHeight == 0 )
{
memset( NewBuf, 0, (size_t) NewWidth * NewHeight *
sizeof( Tout ));
return;
}
else
if( NewWidth == 0 || NewHeight == 0 )
{
return;
}
CImageResizerVars DefVars;
CImageResizerVars& Vars = ( aVars == nullptr ? DefVars : *aVars );
CImageResizerThreadPool DefThreadPool;
CImageResizerThreadPool& ThreadPool = ( Vars.ThreadPool == nullptr ?
DefThreadPool : *Vars.ThreadPool );
// Define resizing steps, also optionally modify offsets so that
// resizing produces a "centered" image.
double kx;
double ky;
double ox = Vars.ox;
double oy = Vars.oy;
if( k == 0.0 )
{
if( NewWidth > SrcWidth )
{
kx = (double) ( SrcWidth - 1 ) / ( NewWidth - 1 );
}
else
{
kx = (double) SrcWidth / NewWidth;
ox += ( kx - 1.0 ) * 0.5;
}
if( NewHeight > SrcHeight )
{
ky = (double) ( SrcHeight - 1 ) / ( NewHeight - 1 );
}
else
{
ky = (double) SrcHeight / NewHeight;
oy += ( ky - 1.0 ) * 0.5;
}
}
else
if( k > 0.0 )
{
kx = k;
ky = k;
if( k > 1.0 )
{
const double ko = ( k - 1.0 ) * 0.5;
ox += ko;
oy += ko;
}
}
else
{
kx = -k;
ky = -k;
}
// Evaluate pre-multipliers used on the output stage.
const bool IsInFloat = ( (Tin) 0.4 != 0 );
const bool IsOutFloat = ( (Tout) 0.4 != 0 );
double OutMul; // Output multiplier.
if( Vars.UseSRGBGamma )
{
if( IsInFloat )
{
Vars.InGammaMult = 1.0;
}
else
{
Vars.InGammaMult =
1.0 / ( sizeof( Tin ) == 1 ? 255.0 : 65535.0 );
}
if( IsOutFloat )
{
Vars.OutGammaMult = 1.0;
}
else
{
Vars.OutGammaMult = ( sizeof( Tout ) == 1 ? 255.0 : 65535.0 );
}
OutMul = 1.0;
}
else
{
if( IsOutFloat )
{
OutMul = 1.0;
}
else
{
OutMul = ( sizeof( Tout ) == 1 ? 255.0 : 65535.0 );
}
if( !IsInFloat )
{
OutMul /= ( sizeof( Tin ) == 1 ? 255.0 : 65535.0 );
}
}
// Fill widely-used variables.
const int ElCount = ( ElCountIO + fpclass :: fppack - 1 ) /
fpclass :: fppack;
const int NewWidthE = NewWidth * ElCount;
if( SrcScanlineSize < 1 )
{
SrcScanlineSize = SrcWidth * ElCountIO;
}
Vars.ElCount = ElCount;
Vars.ElCountIO = ElCountIO;
Vars.fppack = fpclass :: fppack;
Vars.fpalign = fpclass :: fpalign;
Vars.elalign = fpclass :: elalign;
Vars.packmode = fpclass :: packmode;
// Horizontal scanline filtering and resizing.
CDSPFracFilterBankLin< fptype > FltBank;
CFilterSteps FltSteps;
typename CFilterStep :: CRPosBufArray RPosBufArray;
CBuffer< uint8_t > UsedFracMap;
// Perform the filtering steps modeling at various modes, find the
// most efficient mode for both horizontal and vertical resizing.
int UseBuildMode = 1;
const int BuildModeCount =
( FixedFilterBank.getOrder() == 0 ? 4 : 2 );
int m;
if( Vars.BuildMode >= 0 )
{
UseBuildMode = Vars.BuildMode;
}
else
{
int BestScore = 0x7FFFFFFF;
for( m = 0; m < BuildModeCount; m++ )
{
CDSPFracFilterBankLin< fptype > TmpBank;
CFilterSteps TmpSteps;
Vars.k = kx;
Vars.o = ox;
buildFilterSteps( TmpSteps, Vars, TmpBank, OutMul, m, true );
updateFilterStepBuffers( TmpSteps, Vars, RPosBufArray,
SrcWidth, NewWidth );
fillUsedFracMap( TmpSteps[ Vars.ResizeStep ], UsedFracMap );
const int c = calcComplexity( TmpSteps, Vars, UsedFracMap,
SrcHeight );
if( c < BestScore )
{
UseBuildMode = m;
BestScore = c;
}
}
}
// Perform the actual filtering steps building.
Vars.k = kx;
Vars.o = ox;
buildFilterSteps( FltSteps, Vars, FltBank, OutMul, UseBuildMode,
false );
updateFilterStepBuffers( FltSteps, Vars, RPosBufArray, SrcWidth,
NewWidth );
updateBufLenAndRPosPtrs( FltSteps, Vars, NewWidth );
const int ThreadCount = ThreadPool.getSuggestedWorkloadCount();
// Includes the current thread.
CStructArray< CThreadData< Tin, Tout > > td;
td.setItemCount( ThreadCount );
int i;
for( i = 0; i < ThreadCount; i++ )
{
if( i > 0 )
{
ThreadPool.addWorkload( &td[ i ]);
}
td[ i ].init( i, ThreadCount, FltSteps, Vars );
td[ i ].initScanlineQueue( td[ i ].sopResizeH, SrcHeight,
SrcWidth );
}
CBuffer< fptype, size_t > FltBuf( (size_t) NewWidthE * SrcHeight,
fpclass :: fpalign ); // Temporary buffer that receives
// horizontally-filtered and resized image.
for( i = 0; i < SrcHeight; i++ )
{
td[ i % ThreadCount ].addScanlineToQueue(
(void*) &SrcBuf[ (size_t) i * SrcScanlineSize ],
&FltBuf[ (size_t) i * NewWidthE ]);
}
ThreadPool.startAllWorkloads();
td[ 0 ].processScanlineQueue();
ThreadPool.waitAllWorkloadsToFinish();
// Vertical scanline filtering and resizing, reuse previously defined
// filtering steps if possible.
const int PrevUseBuildMode = UseBuildMode;
if( Vars.BuildMode >= 0 )
{
UseBuildMode = Vars.BuildMode;
}
else
{
CImageResizerVars TmpVars( Vars );
int BestScore = 0x7FFFFFFF;
for( m = 0; m < BuildModeCount; m++ )
{
CDSPFracFilterBankLin< fptype > TmpBank;
TmpBank.copyInitParams( FltBank );
CFilterSteps TmpSteps;
TmpVars.k = ky;
TmpVars.o = oy;
buildFilterSteps( TmpSteps, TmpVars, TmpBank, 1.0, m, true );
updateFilterStepBuffers( TmpSteps, TmpVars, RPosBufArray,
SrcHeight, NewHeight );
fillUsedFracMap( TmpSteps[ TmpVars.ResizeStep ],
UsedFracMap );
const int c = calcComplexity( TmpSteps, TmpVars, UsedFracMap,
NewWidth );
if( c < BestScore )
{
UseBuildMode = m;
BestScore = c;
}
}
}
Vars.k = ky;
Vars.o = oy;
if( UseBuildMode == PrevUseBuildMode && ky == kx )
{
if( OutMul != 1.0 )
{
modifyCorrFilterDCGain( FltSteps, 1.0 / OutMul );
}
}
else
{
buildFilterSteps( FltSteps, Vars, FltBank, 1.0, UseBuildMode,
false );
}
updateFilterStepBuffers( FltSteps, Vars, RPosBufArray, SrcHeight,
NewHeight );
updateBufLenAndRPosPtrs( FltSteps, Vars, NewWidth );
if( IsOutFloat && sizeof( FltBuf[ 0 ]) == sizeof( Tout ) &&
fpclass :: packmode == 0 )
{
// In-place output.
for( i = 0; i < ThreadCount; i++ )
{
td[ i ].initScanlineQueue( td[ i ].sopResizeV, NewWidth,
SrcHeight, NewWidthE, NewWidthE );
}
for( i = 0; i < NewWidth; i++ )
{
td[ i % ThreadCount ].addScanlineToQueue(
&FltBuf[ (size_t) i * ElCount ],
(fptype*) (void*) &NewBuf[ (size_t) i * ElCount ]);
}
ThreadPool.startAllWorkloads();
td[ 0 ].processScanlineQueue();
ThreadPool.waitAllWorkloadsToFinish();
ThreadPool.removeAllWorkloads();
return;
}
CBuffer< fptype, size_t > ResBuf( (size_t) NewWidthE * NewHeight,
fpclass :: fpalign );
for( i = 0; i < ThreadCount; i++ )
{
td[ i ].initScanlineQueue( td[ i ].sopResizeV, NewWidth,
SrcHeight, NewWidthE, NewWidthE );
}
const int im = ( fpclass :: packmode == 0 ? ElCount : 1 );
for( i = 0; i < NewWidth; i++ )
{
td[ i % ThreadCount ].addScanlineToQueue(
&FltBuf[ (size_t) i * im ], &ResBuf[ (size_t) i * im ]);
}
ThreadPool.startAllWorkloads();
td[ 0 ].processScanlineQueue();
ThreadPool.waitAllWorkloadsToFinish();
if( IsOutFloat )
{
// Perform output, but skip dithering.
for( i = 0; i < ThreadCount; i++ )
{
td[ i ].initScanlineQueue( td[ i ].sopUnpackH,
NewHeight, NewWidth );
}
for( i = 0; i < NewHeight; i++ )
{
td[ i % ThreadCount ].addScanlineToQueue(
&ResBuf[ (size_t) i * NewWidthE ],
&NewBuf[ (size_t) i * NewWidth * ElCountIO ]);
}
ThreadPool.startAllWorkloads();
td[ 0 ].processScanlineQueue();
ThreadPool.waitAllWorkloadsToFinish();
ThreadPool.removeAllWorkloads();
return;
}
// Perform output with dithering (for integer output only).
int TruncBits; // The number of lower bits to truncate and dither.
int OutRange; // Output range.
if( sizeof( Tout ) == 1 )
{
TruncBits = 8 - ResBitDepth;
OutRange = 255;
}
else
{
TruncBits = 16 - ResBitDepth;
OutRange = 65535;
}
const double PkOut = OutRange;
const double TrMul = ( TruncBits > 0 ?
PkOut / ( OutRange >> TruncBits ) : 1.0 );
if( CDitherer :: isRecursive() )
{
td[ 0 ].getDitherer().init( NewWidth, Vars, TrMul, PkOut );
if( Vars.UseSRGBGamma )
{
for( i = 0; i < NewHeight; i++ )
{
fptype* const ResScanline =
&ResBuf[ (size_t) i * NewWidthE ];
CFilterStep :: applySRGBGamma( ResScanline, NewWidth,
Vars );
td[ 0 ].getDitherer().dither( ResScanline );
CFilterStep :: unpackScanline( ResScanline,
&NewBuf[ (size_t) i * NewWidth * ElCountIO ],
NewWidth, Vars );
}
}
else
{
for( i = 0; i < NewHeight; i++ )
{
fptype* const ResScanline =
&ResBuf[ (size_t) i * NewWidthE ];
td[ 0 ].getDitherer().dither( ResScanline );
CFilterStep :: unpackScanline( ResScanline,
&NewBuf[ (size_t) i * NewWidth * ElCountIO ],
NewWidth, Vars );
}
}
}
else
{
for( i = 0; i < ThreadCount; i++ )
{
td[ i ].initScanlineQueue( td[ i ].sopDitherAndUnpackH,
NewHeight, NewWidth );
td[ i ].getDitherer().init( NewWidth, Vars, TrMul, PkOut );
}
for( i = 0; i < NewHeight; i++ )
{
td[ i % ThreadCount ].addScanlineToQueue(
&ResBuf[ (size_t) i * NewWidthE ],
&NewBuf[ (size_t) i * NewWidth * ElCountIO ]);
}
ThreadPool.startAllWorkloads();
td[ 0 ].processScanlineQueue();
ThreadPool.waitAllWorkloadsToFinish();
}
ThreadPool.removeAllWorkloads();
}
private:
typedef typename fpclass :: fptype fptype; ///< Floating-point type to use
///< during processing.
///<
typedef typename fpclass :: CFilterStep CFilterStep; ///< Filtering step
///< class to use during processing.
///<
typedef typename fpclass :: CDitherer CDitherer; ///< Ditherer class to
///< use during processing.
///<
CImageResizerParams Params; ///< Algorithm's parameters currently in use.
///<
int SrcBitDepth; ///< Bit resolution of the source image.
///<
int ResBitDepth; ///< Bit resolution of the resulting image.
///<
CDSPFracFilterBankLin< fptype > FixedFilterBank; ///< Fractional delay
///< filter bank with fixed characteristics, mainly for upsizing
///< cases.
///<
/**
* @brief Filtering steps array.
*
* The object of this class stores filtering steps together.
*/
typedef CStructArray< CFilterStep > CFilterSteps;
/**
* Function initializes the filter bank in the specified resizing step
* according to the source and resulting image bit depths.
*
* @param FltBank Filter bank to initialize.
* @param CutoffMult Cutoff multiplier, 0 to 1. 1 corresponds to 0.5pi
* cutoff point.
* @param ForceHiOrder "True" if a high-order interpolation should be
* forced which requires considerably less resources for initialization.
* @param ExtFilter External filter to apply to interpolation filter.
*/
void initFilterBank( CDSPFracFilterBankLin< fptype >& FltBank,
const double CutoffMult, const bool ForceHiOrder,
const CFltBuffer& ExtFilter ) const
{
const int IntBitDepth = ( ResBitDepth > SrcBitDepth ? ResBitDepth :
SrcBitDepth );
const double SNR = -6.02 * ( IntBitDepth + 3 );
int UseOrder;
int FracCount; // The number of fractional delay filters sampled by
// the filter bank. This variable affects the signal-to-noise
// ratio at interpolation stage. Theoretically, at UseOrder==1,
// 8-bit image resizing requires 66.2 dB SNR or 11. 16-bit
// resizing requires 114.4 dB SNR or 150. At UseOrder=0 the
// required number of filters is exponentially higher.
if( ForceHiOrder || IntBitDepth > 8 )
{
UseOrder = 1; // -146 dB max
FracCount = (int) ceil( 0.23134052 * exp( -0.058062929 * SNR ));
}
else
{
UseOrder = 0; // -72 dB max
FracCount = (int) ceil( 0.33287686 * exp( -0.11334583 * SNR ));
}
if( FracCount < 2 )
{
FracCount = 2;
}
FltBank.init( FracCount, UseOrder, Params.IntFltLen / CutoffMult,
Params.IntFltCutoff * CutoffMult, Params.IntFltAlpha, ExtFilter,
fpclass :: fpalign, fpclass :: elalign );
}
/**
* Function allocates filter buffer taking "fpclass" alignments into
* account. The allocated buffer may be larger than the requested size: in
* this case the additional elements will be zeroed by this function.
*
* @param Flt Filter buffer.
* @param ReqCapacity The required filter buffer's capacity.
* @param IsModel "True" if filtering steps modeling is performed without
* actual filter allocation.
* @param FltExt If non-NULL this variable will receive the number of
* elements the filter was extended by.
*/
static void allocFilter( CBuffer< fptype >& Flt, const int ReqCapacity,
const bool IsModel = false, int* const FltExt = nullptr )
{
int UseCapacity = ( ReqCapacity + fpclass :: elalign - 1 ) &
~( fpclass :: elalign - 1 );
int Ext = UseCapacity - ReqCapacity;
if( FltExt != nullptr )
{
*FltExt = Ext;
}
if( IsModel )
{
Flt.forceCapacity( UseCapacity );
return;
}
Flt.alloc( UseCapacity, fpclass :: fpalign );
while( Ext > 0 )
{
Ext--;
Flt[ ReqCapacity + Ext ] = 0.0;
}
}
/**
* Function assigns filter parameters to the specified filtering step
* object.
*
* @param fs Filtering step to assign parameter to. This step cannot be
* the last step if ResampleFactor greater than 1 was specified.
* @param IsUpsample "True" if upsampling step. Should be set to "false"
* if FltCutoff is negative.
* @param ResampleFactor Resampling factor of this filter (>=1).
* @param FltCutoff Filter cutoff point. This value will be divided by the
* ResampleFactor if IsUpsample equals "true". If zero value was
* specified, the "half-band" predefined filter will be created. In this
* case the ResampleFactor will modify the filter cutoff point.
* @param DCGain DC gain to apply to the filter. Assigned to filtering
* step's DCGain variable.
* @param UseFltOrig "True" if the originally-designed filter should be
* left in filtering step's FltOrig buffer. Otherwise it will be freed.
* @param IsModel "True" if filtering steps modeling is performed without
* actual filter building.
*/
void assignFilterParams( CFilterStep& fs, const bool IsUpsample,
const int ResampleFactor, const double FltCutoff, const double DCGain,
const bool UseFltOrig, const bool IsModel ) const
{
double FltAlpha;
double Len2;
double Freq;
if( FltCutoff == 0.0 )
{
const double m = 2.0 / ResampleFactor;
FltAlpha = Params.HBFltAlpha;
Len2 = 0.5 * Params.HBFltLen / m;
Freq = AVIR_PI * Params.HBFltCutoff * m;
}
else
{
FltAlpha = Params.LPFltAlpha;
Len2 = 0.25 * Params.LPFltBaseLen / FltCutoff;
Freq = AVIR_PI * Params.LPFltCutoffMult * FltCutoff;
}
if( IsUpsample )
{
Len2 *= ResampleFactor;
Freq /= ResampleFactor;
fs.DCGain = DCGain * ResampleFactor;
}
else
{
fs.DCGain = DCGain;
}
fs.FltOrig.Len2 = Len2;
fs.FltOrig.Freq = Freq;
fs.FltOrig.Alpha = FltAlpha;
fs.FltOrig.DCGain = fs.DCGain;
CDSPPeakedCosineLPF w( Len2, Freq, FltAlpha );
fs.IsUpsample = IsUpsample;
fs.ResampleFactor = ResampleFactor;
fs.FltLatency = w.fl2;
int FltExt; // Filter's extension due to fpclass :: elalign.
if( IsModel )
{
allocFilter( fs.Flt, w.FilterLen, true, &FltExt );
if( UseFltOrig )
{
// Allocate a real buffer even in modeling mode since this
// filter may be copied by the filter bank.
fs.FltOrig.alloc( w.FilterLen );
memset( &fs.FltOrig[ 0 ], 0,
w.FilterLen * sizeof( fs.FltOrig[ 0 ]));
}
}
else
{
fs.FltOrig.alloc( w.FilterLen );
w.generateLPF( &fs.FltOrig[ 0 ], 1.0 );
optimizeFIRFilter( fs.FltOrig, fs.FltLatency );
normalizeFIRFilter( &fs.FltOrig[ 0 ], fs.FltOrig.getCapacity(),
fs.DCGain );
allocFilter( fs.Flt, fs.FltOrig.getCapacity(), false, &FltExt );
copyArray( &fs.FltOrig[ 0 ], &fs.Flt[ 0 ],
fs.FltOrig.getCapacity() );
if( !UseFltOrig )
{
fs.FltOrig.free();
}
}
if( IsUpsample )
{
int l = fs.Flt.getCapacity() - fs.FltLatency - ResampleFactor -
FltExt;
allocFilter( fs.PrefixDC, l, IsModel );
allocFilter( fs.SuffixDC, fs.FltLatency, IsModel );
if( IsModel )
{
return;
}
// Create prefix and suffix "tails" used during upsampling.
const fptype* ip = &fs.Flt[ fs.FltLatency + ResampleFactor ];
copyArray( ip, &fs.PrefixDC[ 0 ], l );
while( true )
{
ip += ResampleFactor;
l -= ResampleFactor;
if( l <= 0 )
{
break;
}
addArray( ip, &fs.PrefixDC[ 0 ], l );
}
l = fs.FltLatency;
fptype* op = &fs.SuffixDC[ 0 ];
copyArray( &fs.Flt[ 0 ], op, l );
while( true )
{
op += ResampleFactor;
l -= ResampleFactor;
if( l <= 0 )
{
break;
}
addArray( &fs.Flt[ 0 ], op, l );
}
}
else
if( !UseFltOrig )
{
fs.EdgePixelCount = fs.EdgePixelCountDef;
}
}
/**
* Function adds a correction filter that tries to achieve a linear
* frequency response at all frequencies. The actual resulting response
* may feature a slight damping of the highest frequencies since a
* suitably short correction filter cannot fix steep high-frequency
* damping.
*
* This function assumes that the resizing step is currently the last
* step, even if it was not inserted yet: this allows placement of the
* correction filter both before and after the resizing step.
*
* @param Steps Filtering steps.
* @param bw Resulting bandwidth relative to the original bandwidth (which
* is 1.0), usually 1/k. Should be <= 1.0.
* @param IsPreCorrection "True" if the filtering step was already created
* and it is first in the Steps array. "True" also adds edge pixels to
* reduce edge artifacts.
* @param IsModel "True" if filtering steps modeling is performed without
* actual filter building.
*/
void addCorrectionFilter( CFilterSteps& Steps, const double bw,
const bool IsPreCorrection, const bool IsModel ) const
{
CFilterStep& fs = ( IsPreCorrection ? Steps[ 0 ] : Steps.add() );
fs.IsUpsample = false;
fs.ResampleFactor = 1;
fs.DCGain = 1.0;
fs.EdgePixelCount = ( IsPreCorrection ? fs.EdgePixelCountDef : 0 );
if( IsModel )
{
allocFilter( fs.Flt, CDSPFIREQ :: calcFilterLength(
Params.CorrFltLen, fs.FltLatency ), true );
return;
}
const int BinCount = 65; // Frequency response bins to control.
const int BinCount1 = BinCount - 1;
double curbw = 1.0; // Bandwidth of the filter at the current step.
int i;
int j;
double re;
double im;
CBuffer< double > Bins( BinCount ); // Adjustment introduced by all
// steps at all frequencies of interest.
for( j = 0; j < BinCount; j++ )
{
Bins[ j ] = 1.0;
}
const int si = ( IsPreCorrection ? 1 : 0 );
for( i = si; i < Steps.getItemCount() - ( si ^ 1 ); i++ )
{
const CFilterStep& fs = Steps[ i ];
if( fs.IsUpsample )
{
curbw *= fs.ResampleFactor;
if( fs.FltOrig.getCapacity() > 0 )
{
continue;
}
}
const double dcg = 1.0 / fs.DCGain; // DC gain correction.
const fptype* Flt;
int FltLen;
if( fs.ResampleFactor == 0 )
{
Flt = fs.FltBank -> getFilter( 0 );
FltLen = fs.FltBank -> getFilterLen();
}
else
{
Flt = &fs.Flt[ 0 ];
FltLen = fs.Flt.getCapacity();
}
// Calculate frequency response adjustment introduced by the
// filter at this step, within the bounds of bandwidth of
// interest.
for( j = 0; j < BinCount; j++ )
{
const double th = AVIR_PI * bw / curbw * j / BinCount1;
calcFIRFilterResponse( Flt, FltLen, th, re, im );
Bins[ j ] /= sqrt( re * re + im * im ) * dcg;
}
if( !fs.IsUpsample && fs.ResampleFactor > 1 )
{
curbw /= fs.ResampleFactor;
}
}
// Calculate filter.
CDSPFIREQ EQ;
EQ.init( bw * 2.0, Params.CorrFltLen, BinCount, 0.0, bw, false,
Params.CorrFltAlpha );
fs.FltLatency = EQ.getFilterLatency();
CBuffer< double > Filter( EQ.getFilterLength() );
EQ.buildFilter( Bins, &Filter[ 0 ]);
normalizeFIRFilter( &Filter[ 0 ], Filter.getCapacity(), 1.0 );
optimizeFIRFilter( Filter, fs.FltLatency );
normalizeFIRFilter( &Filter[ 0 ], Filter.getCapacity(), 1.0 );
allocFilter( fs.Flt, Filter.getCapacity() );
copyArray( &Filter[ 0 ], &fs.Flt[ 0 ], Filter.getCapacity() );
// Print a theoretically achieved final frequency response at various
// feature sizes (from DC to 1 pixel). Values above 255 means features
// become brighter, values below 255 means features become dimmer.
/* const double sbw = ( bw > 1.0 ? 1.0 / bw : 1.0 );
for( j = 0; j < BinCount; j++ )
{
const double th = AVIR_PI * sbw * j / BinCount1;
calcFIRFilterResponse( &fs.Flt[ 0 ], fs.Flt.getCapacity(),
th, re, im );
printf( "%f\n", sqrt( re * re + im * im ) / Bins[ j ] * 255 );
}
printf( "***\n" );*/
}
/**
* Function adds a sharpening filter if image is being upsized. Such
* sharpening allows to spot interpolation filter's stop-band attenuation:
* if attenuation is too weak, a "dark grid" and other artifacts may
* become visible.
*
* It is assumed that 40 decibel stop-band attenuation should be
* considered a required minimum: this allows application of (deliberately
* strong) 64X sharpening without spotting any artifacts.
*
* @param Steps Filtering steps.
* @param bw Resulting bandwidth relative to the original bandwidth (which
* is 1.0), usually 1/k.
* @param IsModel "True" if filtering steps modeling is performed without
* actual filter building.
*/
static void addSharpenTest( CFilterSteps& Steps, const double bw,
const bool IsModel )
{
if( bw <= 1.0 )
{
return;
}
const double FltLen = 10.0 * bw;
CFilterStep& fs = Steps.add();
fs.IsUpsample = false;
fs.ResampleFactor = 1;
fs.DCGain = 1.0;
fs.EdgePixelCount = 0;
if( IsModel )
{
allocFilter( fs.Flt, CDSPFIREQ :: calcFilterLength( FltLen,
fs.FltLatency ), true );
return;
}
const int BinCount = 200;
CBuffer< double > Bins( BinCount );
int Thresh = (int) round( BinCount / bw * 1.75 );
if( Thresh > BinCount )
{
Thresh = BinCount;
}
int j;
for( j = 0; j < Thresh; j++ )
{
Bins[ j ] = 1.0;
}
for( j = Thresh; j < BinCount; j++ )
{
Bins[ j ] = 256.0;
}
CDSPFIREQ EQ;
EQ.init( bw * 2.0, FltLen, BinCount, 0.0, bw, false, 1.7 );
fs.FltLatency = EQ.getFilterLatency();
CBuffer< double > Filter( EQ.getFilterLength() );
EQ.buildFilter( Bins, &Filter[ 0 ]);
normalizeFIRFilter( &Filter[ 0 ], Filter.getCapacity(), 1.0 );
optimizeFIRFilter( Filter, fs.FltLatency );
normalizeFIRFilter( &Filter[ 0 ], Filter.getCapacity(), 1.0 );
allocFilter( fs.Flt, Filter.getCapacity() );
copyArray( &Filter[ 0 ], &fs.Flt[ 0 ], Filter.getCapacity() );
/* for( j = 0; j < BinCount; j++ )
{
const double th = AVIR_PI * j / ( BinCount - 1 );
double re;
double im;
calcFIRFilterResponse( &fs.Flt[ 0 ], fs.Flt.getCapacity(),
th, re, im );
printf( "%f\n", sqrt( re * re + im * im ));
}
printf( "***\n" );*/
}
/**
* Function builds sequence of filtering steps depending on the specified
* resizing coefficient. The last steps included are always the resizing
* step then (possibly) the correction step.
*
* @param Steps Array that receives filtering steps.
* @param[out] Vars Variables object.
* @param FltBank Filter bank to initialize and use.
* @param DCGain The overall DC gain to apply. This DC gain is applied to
* the first filtering step only (upsampling or filtering step).
* @param ModeFlags Build mode flags to use. This is a bitmap of switches
* that enable or disable certain algorithm features.
* @param IsModel "True" if filtering steps modeling is performed without
* the actual filter allocation and building.
*/
void buildFilterSteps( CFilterSteps& Steps, CImageResizerVars& Vars,
CDSPFracFilterBankLin< fptype >& FltBank, const double DCGain,
const int ModeFlags, const bool IsModel ) const
{
Steps.clear();
const bool DoFltAndIntCombo = (( ModeFlags & 1 ) != 0 ); // Do filter
// and interpolator combining.
const bool ForceHiOrderInt = (( ModeFlags & 2 ) != 0 ); // Force use
// of a higher-order interpolation.
const bool UseHalfband = (( ModeFlags & 4 ) != 0 ); // Use half-band
// filter.
const double bw = 1.0 / Vars.k; // Resulting bandwidth.
const int UpsampleFactor = ( (int) floor( Vars.k ) < 2 ? 2 : 1 );
double IntCutoffMult; // Interpolation filter cutoff multiplier.
CFilterStep* ReuseStep; // If not NULL, resizing step should use
// this step object instead of creating a new one.
CFilterStep* ExtFltStep; // Use FltOrig of this step as the external
// filter to applied to the interpolator.
bool IsPreCorrection; // "True" if the correction filter is applied
// first.
double FltCutoff; // Cutoff frequency of the first filtering step.
double corrbw; ///< Bandwidth at the correction step.
if( Vars.k <= 1.0 )
{
IsPreCorrection = true;
FltCutoff = 1.0;
corrbw = 1.0;
Steps.add();
}
else
{
IsPreCorrection = false;
FltCutoff = bw;
corrbw = bw;
}
// Add 1 upsampling or several downsampling filters.
if( UpsampleFactor > 1 )
{
CFilterStep& fs = Steps.add();
assignFilterParams( fs, true, UpsampleFactor, FltCutoff, DCGain,
DoFltAndIntCombo, IsModel );
IntCutoffMult = FltCutoff * 2.0 / UpsampleFactor;
ReuseStep = nullptr;
ExtFltStep = ( DoFltAndIntCombo ? &fs : nullptr );
}
else
{
int DownsampleFactor;
while( true )
{
DownsampleFactor = (int) floor( 0.5 / FltCutoff );
bool DoHBFltAdd;
if( DownsampleFactor > 16 )
{
// Add half-band filter unconditionally in order to keep
// filter lengths lower for more precise frequency
// response and less edge artifacts.
DoHBFltAdd = true;
DownsampleFactor = 16;
}
else
{
DoHBFltAdd = ( UseHalfband && DownsampleFactor > 1 );
}
if( DoHBFltAdd )
{
assignFilterParams( Steps.add(), false, DownsampleFactor,
0.0, 1.0, false, IsModel );
FltCutoff *= DownsampleFactor;
}
else
{
if( DownsampleFactor < 1 )
{
DownsampleFactor = 1;
}
break;
}
}
CFilterStep& fs = Steps.add();
assignFilterParams( fs, false, DownsampleFactor, FltCutoff,
DCGain, DoFltAndIntCombo, IsModel );
IntCutoffMult = FltCutoff / 0.5;
if( DoFltAndIntCombo )
{
ReuseStep = &fs;
ExtFltStep = &fs;
}
else
{
IntCutoffMult *= DownsampleFactor;
ReuseStep = nullptr;
ExtFltStep = nullptr;
}
}
// Insert resizing and correction steps.
CFilterStep& fs = ( ReuseStep == nullptr ? Steps.add() : *ReuseStep );
Vars.ResizeStep = Steps.getItemCount() - 1;
fs.IsUpsample = false;
fs.ResampleFactor = 0;
fs.DCGain = ( ExtFltStep == nullptr ? 1.0 : ExtFltStep -> DCGain );
initFilterBank( FltBank, IntCutoffMult, ForceHiOrderInt,
( ExtFltStep == nullptr ? fs.FltOrig : ExtFltStep -> FltOrig ));
if( FltBank == FixedFilterBank )
{
fs.FltBank = (CDSPFracFilterBankLin< fptype >*) &FixedFilterBank;
}
else
{
fs.FltBank = &FltBank;
}
addCorrectionFilter( Steps, corrbw, IsPreCorrection, IsModel );
//addSharpenTest( Steps, bw, IsModel );
}
/**
* Function extends *this upsampling step so that it produces more
* upsampled pixels that cover the prefix and suffix needs of the next
* step. After the call to this function the InPrefix and InSuffix
* variables of the next step will be set to zero.
*
* @param fs Upsampling filtering step.
* @param NextStep The next step structure.
*/
static void extendUpsample( CFilterStep& fs, CFilterStep& NextStep )
{
fs.InPrefix = ( NextStep.InPrefix + fs.ResampleFactor - 1 ) /
fs.ResampleFactor;
fs.OutPrefix += fs.InPrefix * fs.ResampleFactor;
NextStep.InPrefix = 0;
fs.InSuffix = ( NextStep.InSuffix + fs.ResampleFactor - 1 ) /
fs.ResampleFactor;
fs.OutSuffix += fs.InSuffix * fs.ResampleFactor;
NextStep.InSuffix = 0;
}
/**
* Function fills resizing step's RPosBuf array, excluding the actual
* "ftp" pointers and "SrcOffs" offsets.
*
* This array should be cleared if the resizing step or offset were
* changed. Otherwise this function only fills the elements required to
* cover resizing step's OutLen.
*
* This function is called by the updateFilterStepBuffers() function.
*
* @param fs Resizing step.
* @param Vars Variables object.
*/
static void fillRPosBuf( CFilterStep& fs, const CImageResizerVars& Vars )
{
const int PrevLen = fs.RPosBuf -> getCapacity();
if( fs.OutLen > PrevLen )
{
fs.RPosBuf -> increaseCapacity( fs.OutLen );
}
typename CFilterStep :: CResizePos* rpos = &(*fs.RPosBuf)[ PrevLen ];
const int FracCount = fs.FltBank -> getFracCount();
const double o = Vars.o;
const double k = Vars.k;
int i;
for( i = PrevLen; i < fs.OutLen; i++ )
{
const double SrcPos = o + k * i;
const int SrcPosInt = (int) floor( SrcPos );
const double x = ( SrcPos - SrcPosInt ) * FracCount;
const int fti = (int) x;
rpos -> x = (typename fpclass :: fptypeatom) ( x - fti );
rpos -> fti = fti;
rpos -> SrcPosInt = SrcPosInt;
rpos++;
}
}
/**
* Function updates filtering step buffer lengths depending on the
* specified source and new scanline lengths. This function should be
* called after the buildFilterSteps() function.
*
* @param Steps Array that receives filtering steps.
* @param[out] Vars Variables object, will receive buffer size and length.
* This function expects "k" and "o" variable values that will be
* adjusted by this function.
* @param RPosBufArray Resizing position buffers array, used to obtain
* buffer to initialize and use (will be reused if it is already fully or
* partially filled).
* @param SrcLen Source scanline's length in pixels.
* @param NewLen New scanline's length in pixels.
*/
static void updateFilterStepBuffers( CFilterSteps& Steps,
CImageResizerVars& Vars,
typename CFilterStep :: CRPosBufArray& RPosBufArray, int SrcLen,
const int NewLen )
{
int upstep = -1;
int InBuf = 0;
int i;
for( i = 0; i < Steps.getItemCount(); i++ )
{
CFilterStep& fs = Steps[ i ];
fs.Vars = &Vars;
fs.InLen = SrcLen;
fs.InBuf = InBuf;
fs.OutBuf = ( InBuf + 1 ) & 1;
if( fs.IsUpsample )
{
upstep = i;
Vars.k *= fs.ResampleFactor;
Vars.o *= fs.ResampleFactor;
fs.InPrefix = 0;
fs.InSuffix = 0;
fs.OutLen = fs.InLen * fs.ResampleFactor;
fs.OutPrefix = fs.FltLatency;
fs.OutSuffix = fs.Flt.getCapacity() - fs.FltLatency -
fs.ResampleFactor;
int l0 = fs.OutPrefix + fs.OutLen + fs.OutSuffix;
int l = fs.InLen * fs.ResampleFactor +
fs.SuffixDC.getCapacity();
if( l > l0 )
{
fs.OutSuffix += l - l0;
}
l0 = fs.OutLen + fs.OutSuffix;
if( fs.PrefixDC.getCapacity() > l0 )
{
fs.OutSuffix += fs.PrefixDC.getCapacity() - l0;
}
}
else
if( fs.ResampleFactor == 0 )
{
const int FilterLenD2 = fs.FltBank -> getFilterLen() / 2;
const int FilterLenD21 = FilterLenD2 - 1;
const int ResizeLPix = (int) floor( Vars.o ) - FilterLenD21;
fs.InPrefix = ( ResizeLPix < 0 ? -ResizeLPix : 0 );
const int ResizeRPix = (int) floor( Vars.o +
( NewLen - 1 ) * Vars.k ) + FilterLenD2 + 1;
fs.InSuffix = ( ResizeRPix > fs.InLen ?
ResizeRPix - fs.InLen : 0 );
fs.OutLen = NewLen;
fs.RPosBuf = &RPosBufArray.getRPosBuf( Vars.k, Vars.o,
fs.FltBank -> getFracCount() );
fillRPosBuf( fs, Vars );
}
else
{
Vars.k /= fs.ResampleFactor;
Vars.o /= fs.ResampleFactor;
Vars.o += fs.EdgePixelCount;
fs.InPrefix = fs.FltLatency;
fs.InSuffix = fs.Flt.getCapacity() - fs.FltLatency - 1;
// Additionally extend OutLen to produce more precise edge
// pixels.
fs.OutLen = ( fs.InLen + fs.ResampleFactor - 1 ) /
fs.ResampleFactor + fs.EdgePixelCount;
fs.InSuffix += ( fs.OutLen - 1 ) * fs.ResampleFactor + 1 -
fs.InLen;
fs.InPrefix += fs.EdgePixelCount * fs.ResampleFactor;
fs.OutLen += fs.EdgePixelCount;
}
InBuf = fs.OutBuf;
SrcLen = fs.OutLen;
}
Steps[ Steps.getItemCount() - 1 ].OutBuf = 2;
if( upstep != -1 )
{
extendUpsample( Steps[ upstep ], Steps[ upstep + 1 ]);
}
}
/**
* Function calculates an optimal intermediate buffer length that will
* cover all needs of the specified filtering steps. This function should
* be called after the updateFilterStepBuffers() function.
*
* Function also updates resizing step's RPosBuf pointers to the filter
* bank and SrcOffs values.
*
* @param Steps Filtering steps.
* @param[out] Vars Variables object, will receive buffer size and length.
* @param ResElIncr Resulting (final) element increment, used to produce
* de-interleaved result. For horizontal processing this value is equal
* to last step's OutLen, for vertical processing this value is equal to
* resulting image's width.
*/
static void updateBufLenAndRPosPtrs( CFilterSteps& Steps,
CImageResizerVars& Vars, const int ResElIncr )
{
int MaxPrefix[ 2 ] = { 0, 0 };
int MaxLen[ 2 ] = { 0, 0 };
int i;
for( i = 0; i < Steps.getItemCount(); i++ )
{
CFilterStep& fs = Steps[ i ];
const int ib = fs.InBuf;
if( fs.InPrefix > MaxPrefix[ ib ])
{
MaxPrefix[ ib ] = fs.InPrefix;
}
int l = fs.InLen + fs.InSuffix;
if( l > MaxLen[ ib ])
{
MaxLen[ ib ] = l;
}
fs.InElIncr = fs.InPrefix + l;
if( fs.OutBuf == 2 )
{
break;
}
const int ob = fs.OutBuf;
if( fs.IsUpsample )
{
if( fs.OutPrefix > MaxPrefix[ ob ])
{
MaxPrefix[ ob ] = fs.OutPrefix;
}
l = fs.OutLen + fs.OutSuffix;
if( l > MaxLen[ ob ])
{
MaxLen[ ob ] = l;
}
}
else
{
if( fs.OutLen > MaxLen[ ob ])
{
MaxLen[ ob ] = fs.OutLen;
}
}
}
// Update OutElIncr values of all steps.
for( i = 0; i < Steps.getItemCount(); i++ )
{
CFilterStep& fs = Steps[ i ];
if( fs.OutBuf == 2 )
{
fs.OutElIncr = ResElIncr;
break;
}
CFilterStep& fs2 = Steps[ i + 1 ];
if( fs.IsUpsample )
{
fs.OutElIncr = fs.OutPrefix + fs.OutLen + fs.OutSuffix;
if( fs.OutElIncr > fs2.InElIncr )
{
fs2.InElIncr = fs.OutElIncr;
}
else
{
fs.OutElIncr = fs2.InElIncr;
}
}
else
{
fs.OutElIncr = fs2.InElIncr;
}
}
// Update temporary buffer's length.
for( i = 0; i < 2; i++ )
{
Vars.BufLen[ i ] = MaxPrefix[ i ] + MaxLen[ i ];
Vars.BufOffs[ i ] = MaxPrefix[ i ];
if( Vars.packmode == 0 )
{
Vars.BufOffs[ i ] *= Vars.ElCount;
}
Vars.BufLen[ i ] *= Vars.ElCount;
}
// Update RPosBuf pointers and SrcOffs.
CFilterStep& fs = Steps[ Vars.ResizeStep ];
typename CFilterStep :: CResizePos* rpos = &(*fs.RPosBuf)[ 0 ];
const int em = ( fpclass :: packmode == 0 ? Vars.ElCount : 1 );
const int FilterLenD21 = fs.FltBank -> getFilterLen() / 2 - 1;
for( i = 0; i < fs.OutLen; i++ )
{
rpos -> ftp = fs.FltBank -> getFilter( rpos -> fti );
rpos -> SrcOffs = ( rpos -> SrcPosInt - FilterLenD21 ) * em;
rpos++;
}
}
/**
* Function modifies the overall (DC) gain of the correction filter in the
* pre-built filtering steps array.
*
* @param Steps Filtering steps.
* @param m Multiplier to apply to the correction filter.
*/
void modifyCorrFilterDCGain( CFilterSteps& Steps, const double m ) const
{
CBuffer< fptype >* Flt;
const int z = Steps.getItemCount() - 1;
if( !Steps[ z ].IsUpsample && Steps[ z ].ResampleFactor == 1 )
{
Flt = &Steps[ z ].Flt;
}
else
{
Flt = &Steps[ 0 ].Flt;
}
int i;
for( i = 0; i < Flt -> getCapacity(); i++ )
{
(*Flt)[ i ] = (fptype) ( (double) (*Flt)[ i ] * m );
}
}
/**
* Function builds a map of used fractional delay filters based on the
* resizing positions buffer.
*
* @param fs Resizing step.
* @param[out] UsedFracMap Map of used fractional delay filters.
*/
static void fillUsedFracMap( const CFilterStep& fs,
CBuffer< uint8_t >& UsedFracMap )
{
const int FracCount = fs.FltBank -> getFracCount();
UsedFracMap.increaseCapacity( FracCount, false );
memset( &UsedFracMap[ 0 ], 0, FracCount * sizeof( UsedFracMap[ 0 ]));
typename CFilterStep :: CResizePos* rpos = &(*fs.RPosBuf)[ 0 ];
int i;
for( i = 0; i < fs.OutLen; i++ )
{
UsedFracMap[ rpos -> fti ] |= 1;
rpos++;
}
}
/**
* Function calculates the overall filtering steps complexity per
* scanline. Each complexity unit corresponds to a single multiply-add
* operation. Data copy and pointer math operations are not included in
* this calculation, it is assumed that they correlate to the multiply-add
* operations. Calculation also does not include final rounding, dithering
* and clamping operations since they cannot be optimized out anyway.
*
* Calculation of the CRPosBuf buffer is not included since it cannot be
* avoided.
*
* This function should be called after the updateFilterStepBuffers()
* function.
*
* @param Steps Filtering steps array.
* @param Vars Variables object.
* @param UsedFracMap The map of used fractional delay filters.
* @param ScanlineCount Scanline count.
*/
static int calcComplexity( const CFilterSteps& Steps,
const CImageResizerVars& Vars, const CBuffer< uint8_t >& UsedFracMap,
const int ScanlineCount )
{
int fcnum; // Filter complexity multiplier numerator.
int fcdenom; // Filter complexity multiplier denominator.
if( Vars.packmode != 0 )
{
fcnum = 1;
fcdenom = 1;
}
else
{
// In interleaved processing mode, filters require 1 less
// multiplication per 2 multiply-add instructions.
fcnum = 3;
fcdenom = 4;
}
int s = 0; // Complexity per one scanline.
int s2 = 0; // Complexity per all scanlines.
int i;
for( i = 0; i < Steps.getItemCount(); i++ )
{
const CFilterStep& fs = Steps[ i ];
s2 += 65 * fs.Flt.getCapacity(); // Filter creation complexity.
if( fs.IsUpsample )
{
if( fs.FltOrig.getCapacity() > 0 )
{
continue;
}
s += ( fs.Flt.getCapacity() *
( fs.InPrefix + fs.InLen + fs.InSuffix ) +
fs.SuffixDC.getCapacity() + fs.PrefixDC.getCapacity() ) *
Vars.ElCount;
}
else
if( fs.ResampleFactor == 0 )
{
s += fs.FltBank -> getFilterLen() *
( fs.FltBank -> getOrder() + Vars.ElCount ) * fs.OutLen;
s2 += fs.FltBank -> calcInitComplexity( UsedFracMap );
}
else
{
s += fs.Flt.getCapacity() * Vars.ElCount * fs.OutLen *
fcnum / fcdenom;
}
}
return( s + s2 / ScanlineCount );
}
/**
* @brief Thread-isolated data used for scanline processing.
*
* This structure holds data necessary for image's horizontal or vertical
* scanline processing, including scanline processing queue.
*
* @tparam Tin Source element data type. Intermediate buffers store data
* in floating point format.
* @tparam Tout Destination element data type. Intermediate buffers store
* data in floating point format.
*/
template< class Tin, class Tout >
class CThreadData : public CImageResizerThreadPool :: CWorkload
{
public:
virtual void process()
{
processScanlineQueue();
}
/**
* This enumeration lists possible scanline operations.
*/
enum EScanlineOperation
{
sopResizeH, ///< Resize horizontal scanline.
///<
sopResizeV, ///< Resize vertical scanline.
///<
sopDitherAndUnpackH, ///< Dither and unpack horizontal scanline.
///<
sopUnpackH ///< Unpack horizontal scanline.
///<
};
/**
* Function initializes *this thread data object and assigns certain
* variables provided by the higher level code.
*
* @param aThreadIndex Index of this thread data (0-based).
* @param aThreadCount Total number of threads used during processing.
* @param aSteps Filtering steps.
* @param aVars Image resizer variables.
*/
void init( const int aThreadIndex, const int aThreadCount,
const CFilterSteps& aSteps, const CImageResizerVars& aVars )
{
ThreadIndex = aThreadIndex;
ThreadCount = aThreadCount;
Steps = &aSteps;
Vars = &aVars;
}
/**
* Function initializes scanline processing queue, and updates
* capacities of intermediate buffers.
*
* @param aOp Operation to perform over scanline.
* @param TotalLines The total number of scanlines that will be
* processed by all threads.
* @param aSrcLen Source scanline length in pixels.
* @param aSrcIncr Source scanline buffer increment. Ignored in
* horizontal scanline processing.
* @param aResIncr Resulting scanline buffer increment. Ignored in
* horizontal scanline processing.
*/
void initScanlineQueue( const EScanlineOperation aOp,
const int TotalLines, const int aSrcLen, const int aSrcIncr = 0,
const int aResIncr = 0 )
{
const int l = Vars -> BufLen[ 0 ] + Vars -> BufLen[ 1 ];
if( Bufs.getCapacity() < l )
{
Bufs.alloc( l, fpclass :: fpalign );
}
BufPtrs[ 0 ] = Bufs + Vars -> BufOffs[ 0 ];
BufPtrs[ 1 ] = Bufs + Vars -> BufLen[ 0 ] + Vars -> BufOffs[ 1 ];
int j;
int ml = 0;
for( j = 0; j < Steps -> getItemCount(); j++ )
{
const CFilterStep& fs = (*Steps)[ j ];
if( fs.ResampleFactor == 0 &&
ml < fs.FltBank -> getFilterLen() )
{
ml = fs.FltBank -> getFilterLen();
}
}
TmpFltBuf.alloc( ml, fpclass :: fpalign );
ScanlineOp = aOp;
SrcLen = aSrcLen;
SrcIncr = aSrcIncr;
ResIncr = aResIncr;
QueueLen = 0;
Queue.increaseCapacity(( TotalLines + ThreadCount - 1 ) /
ThreadCount, false );
}
/**
* Function adds a scanline to the queue buffer. The
* initScanlineQueue() function should be called before calling this
* function. The number of calls to this add function should not
* exceed the TotalLines spread over all threads.
*
* @param SrcBuf Source scanline buffer.
* @param ResBuf Resulting scanline buffer.
*/
void addScanlineToQueue( void* const SrcBuf, void* const ResBuf )
{
Queue[ QueueLen ].SrcBuf = SrcBuf;
Queue[ QueueLen ].ResBuf = ResBuf;
QueueLen++;
}
/**
* Function processes all queued scanlines.
*/
void processScanlineQueue()
{
int i;
switch( ScanlineOp )
{
case sopResizeH:
{
for( i = 0; i < QueueLen; i++ )
{
resizeScanlineH( (Tin*) Queue[ i ].SrcBuf,
(fptype*) Queue[ i ].ResBuf );
}
break;
}
case sopResizeV:
{
for( i = 0; i < QueueLen; i++ )
{
resizeScanlineV( (fptype*) Queue[ i ].SrcBuf,
(fptype*) Queue[ i ].ResBuf );
}
break;
}
case sopDitherAndUnpackH:
{
if( Vars -> UseSRGBGamma )
{
for( i = 0; i < QueueLen; i++ )
{
CFilterStep :: applySRGBGamma(
(fptype*) Queue[ i ].SrcBuf, SrcLen, *Vars );
Ditherer.dither( (fptype*) Queue[ i ].SrcBuf );
CFilterStep :: unpackScanline(
(fptype*) Queue[ i ].SrcBuf,
(Tout*) Queue[ i ].ResBuf, SrcLen, *Vars );
}
}
else
{
for( i = 0; i < QueueLen; i++ )
{
Ditherer.dither( (fptype*) Queue[ i ].SrcBuf );
CFilterStep :: unpackScanline(
(fptype*) Queue[ i ].SrcBuf,
(Tout*) Queue[ i ].ResBuf, SrcLen, *Vars );
}
}
break;
}
case sopUnpackH:
{
if( Vars -> UseSRGBGamma )
{
for( i = 0; i < QueueLen; i++ )
{
CFilterStep :: applySRGBGamma(
(fptype*) Queue[ i ].SrcBuf, SrcLen, *Vars );
CFilterStep :: unpackScanline(
(fptype*) Queue[ i ].SrcBuf,
(Tout*) Queue[ i ].ResBuf, SrcLen, *Vars );
}
}
else
{
for( i = 0; i < QueueLen; i++ )
{
CFilterStep :: unpackScanline(
(fptype*) Queue[ i ].SrcBuf,
(Tout*) Queue[ i ].ResBuf, SrcLen, *Vars );
}
}
break;
}
}
}
/**
* Function returns ditherer object associated with *this thread data
* object.
*/
CDitherer& getDitherer()
{
return( Ditherer );
}
private:
int ThreadIndex; ///< Thread index.
///<
int ThreadCount; ///< Thread count.
///<
const CFilterSteps* Steps; ///< Filtering steps.
///<
const CImageResizerVars* Vars; ///< Image resizer variables.
///<
CBuffer< fptype > Bufs; ///< Flip-flop intermediate buffers.
///<
fptype* BufPtrs[ 3 ]; ///< Flip-flop buffer pointers (referenced by
///< filtering step's InBuf and OutBuf indices).
///<
CBuffer< fptype > TmpFltBuf; ///< Temporary buffer used in the
///< doResize() function, aligned by fpclass :: fpalign.
///<
EScanlineOperation ScanlineOp; ///< Operation to perform over
///< scanline.
///<
int SrcLen; ///< Source scanline length in the last queue.
///<
int SrcIncr; ///< Source scanline buffer increment in the last queue.
///<
int ResIncr; ///< Resulting scanline buffer increment in the last
///< queue.
///<
CDitherer Ditherer; ///< Ditherer object to use.
///<
/**
* @brief Scanline processing queue item.
*
* Scanline processing queue item.
*/
struct CQueueItem
{
void* SrcBuf; ///< Source scanline buffer, will by typecasted to
///< Tin or fptype*.
///<
void* ResBuf; ///< Resulting scanline buffer, will by typecasted
///< to Tout or fptype*.
///<
};
CBuffer< CQueueItem > Queue; ///< Scanline processing queue.
///<
int QueueLen; ///< Queue length.
///<
/**
* Function resizes a single horizontal scanline.
*
* @param SrcBuf Source scanline buffer. Can be either horizontal or
* vertical.
* @param ResBuf Resulting scanline buffer.
*/
void resizeScanlineH( const Tin* const SrcBuf, fptype* const ResBuf )
{
(*Steps)[ 0 ].packScanline( SrcBuf, BufPtrs[ 0 ], SrcLen );
BufPtrs[ 2 ] = ResBuf;
int j;
for( j = 0; j < Steps -> getItemCount(); j++ )
{
const CFilterStep& fs = (*Steps)[ j ];
fs.prepareInBuf( BufPtrs[ fs.InBuf ]);
const int DstIncr =
( Vars -> packmode == 0 ? Vars -> ElCount : 1 );
if( fs.ResampleFactor != 0 )
{
if( fs.IsUpsample )
{
fs.doUpsample( BufPtrs[ fs.InBuf ],
BufPtrs[ fs.OutBuf ]);
}
else
{
fs.doFilter( BufPtrs[ fs.InBuf ],
BufPtrs[ fs.OutBuf ], DstIncr );
}
}
else
{
fs.doResize( BufPtrs[ fs.InBuf ], BufPtrs[ fs.OutBuf ],
DstIncr, TmpFltBuf );
}
}
}
/**
* Function resizes a single vertical scanline.
*
* @param SrcBuf Source scanline buffer. Can be either horizontal or
* vertical.
* @param ResBuf Resulting scanline buffer.
*/
void resizeScanlineV( const fptype* const SrcBuf,
fptype* const ResBuf )
{
(*Steps)[ 0 ].convertVtoH( SrcBuf, BufPtrs[ 0 ], SrcLen,
SrcIncr );
BufPtrs[ 2 ] = ResBuf;
int j;
for( j = 0; j < Steps -> getItemCount(); j++ )
{
const CFilterStep& fs = (*Steps)[ j ];
fs.prepareInBuf( BufPtrs[ fs.InBuf ]);
const int DstIncr = ( fs.OutBuf == 2 ? ResIncr :
( Vars -> packmode == 0 ? Vars -> ElCount : 1 ));
if( fs.ResampleFactor != 0 )
{
if( fs.IsUpsample )
{
fs.doUpsample( BufPtrs[ fs.InBuf ],
BufPtrs[ fs.OutBuf ]);
}
else
{
fs.doFilter( BufPtrs[ fs.InBuf ],
BufPtrs[ fs.OutBuf ], DstIncr );
}
}
else
{
fs.doResize( BufPtrs[ fs.InBuf ], BufPtrs[ fs.OutBuf ],
DstIncr, TmpFltBuf );
}
}
}
};
};
#undef AVIR_PI
#undef AVIR_PId2
} // namespace avir
#endif // AVIR_CIMAGERESIZER_INCLUDED